Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Methods Mol Biol ; 2795: 227-238, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38594542

RESUMEN

In plants, complex signaling networks monitor and respond to environmental cues to determine the optimal time for the transition from the vegetative to reproductive phase. Understanding these networks requires robust tools to examine the levels and subcellular localization of key factors. The florigen FLOWERING LOCUS T (FT) is a crucial regulator of flowering time and occurs in soluble and membrane-bound forms. At low ambient temperatures, the ratio of these forms of FT undergoes a significant shift, which leads to a delay in the onset of flowering. To investigate these changes in FT localization, epitope-tagged FT protein can be isolated from plants by subcellular fractionation and its localization examined by immunoblot analysis of the resulting fractions. However, the highly abundant protein ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) can interfere with methods to detect and characterize low-abundance proteins such as FT. In this chapter, we present a method for analyzing the ratio of HA-tagged FT (HA:FT) in different subcellular fractions while mitigating the interference from RuBisCO by using protamine sulfate (PS) to deplete RuBisCO during protein purification, thereby enhancing HA:FT detection in fractionated samples.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Florigena/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ribulosa-Bifosfato Carboxilasa/genética , Ribulosa-Bifosfato Carboxilasa/metabolismo , Transducción de Señal , Regulación de la Expresión Génica de las Plantas , Flores/metabolismo
2.
Plant Commun ; 4(3): 100515, 2023 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-36597356

RESUMEN

The timing of flowering is tightly controlled by signals that integrate environmental and endogenous cues. Sugars produced by carbon fixation in the chloroplast are a crucial endogenous cue for floral initiation. Chloroplasts also convey information directly to the nucleus through retrograde signaling to control plant growth and development. Here, we show that mutants defective in chlorophyll biosynthesis and chloroplast development flowered early, especially under long-day conditions, although low sugar accumulation was seen in some mutants. Plants treated with the bleaching herbicide norflurazon also flowered early, suggesting that chloroplasts have a role in floral repression. Among retrograde signaling mutants, the golden2-like 1 (glk1) glk2 double mutants showed early flowering under long-day conditions. This early flowering was completely suppressed by constans (co) and flowering locus t (ft) mutations. Leaf vascular-specific knockdown of both GLK1 and GLK2 phenocopied the glk1 glk2 mutants. GLK1 and GLK2 repress flowering by directly activating the expression of B-BOX DOMAIN PROTEIN 14 (BBX14), BBX15, and BBX16 via CCAATC cis-elements in the BBX genes. BBX14/15/16 physically interact with CO in the nucleus, and expression of BBXs hampered CO-mediated FT transcription. Simultaneous knockdown of BBX14/15/16 by artificial miRNA (35S::amiR-BBX14/15/16) caused early flowering with increased FT transcript levels, whereas BBX overexpression caused late flowering. Flowering of glk1/2 and 35S::amiR-BBX14/15/16 plants was insensitive to norflurazon treatment. Taking these observations together, we propose that the GLK1/2-BBX14/15/16 module provides a novel mechanism explaining how the chloroplast represses flowering to balance plant growth and reproductive development.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Unión al ADN/genética , Cloroplastos/metabolismo
3.
Bio Protoc ; 12(10): e4421, 2022 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-35813025

RESUMEN

Protein-lipid interactions play important roles in many biological processes, including metabolism, signaling, and transport; however, computational and structural analyses often fail to predict such interactions, and determining which lipids participate in these interactions remains challenging. In vitro assays to assess the physical interaction between a protein of interest and a panel of phospholipids provide crucial information for predicting the functionality of these interactions in vivo. In this protocol, which we developed in the context of evaluating protein-lipid binding of the Arabidopsis thaliana florigen FLOWERING LOCUS T, we describe four independent in vitro experiments to determine the interaction of a protein with phospholipids: lipid-protein overlay assays, liposome binding assays, biotin-phospholipid pull-down assays, and fluorescence polarization assays. These complementary assays allow the researcher to test whether the protein of interest interacts with lipids in the test panel, identify the relevant lipids, and assess the strength of the interaction.

4.
Plant Cell Environ ; 45(2): 479-495, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34778961

RESUMEN

Dolichols (Dols), ubiquitous components of living organisms, are indispensable for cell survival. In plants, as well as other eukaryotes, Dols are crucial for post-translational protein glycosylation, aberration of which leads to fatal metabolic disorders in humans and male sterility in plants. Until now, the mechanisms underlying Dol accumulation remain elusive. In this study, we have analysed the natural variation of the accumulation of Dols and six other isoprenoids among more than 120 Arabidopsis thaliana accessions. Subsequently, by combining QTL and GWAS approaches, we have identified several candidate genes involved in the accumulation of Dols, polyprenols, plastoquinone and phytosterols. The role of two genes implicated in the accumulation of major Dols in Arabidopsis-the AT2G17570 gene encoding a long searched for cis-prenyltransferase (CPT3) and the AT1G52460 gene encoding an α/ß-hydrolase-is experimentally confirmed. These data will help to generate Dol-enriched plants which might serve as a remedy for Dol-deficiency in humans.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/metabolismo , Dolicoles/metabolismo , Hidrolasas/genética , Transferasas/genética , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Dolicoles/genética , Hidrolasas/metabolismo , Transferasas/metabolismo
5.
Science ; 373(6559): 1137-1142, 2021 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-34516842

RESUMEN

Plants respond to temperature changes by modulating florigen activity to optimize the timing of flowering. We show that the Arabidopsis thaliana mobile florigen FLOWERING LOCUS T (FT) interacts with the negatively charged phospholipid phosphatidylglycerol (PG) at cellular membranes and binds the lipid bilayer. Perturbing PG biosynthesis in phloem companion cells leads to temperature-insensitive early flowering. Low temperatures facilitate FT sequestration in the cellular membrane of the companion cell, thus reducing soluble FT levels and delaying flowering. A mutant in PHOSPHATIDYLGLYCEROLPHOSPHATE SYNTHASE 1 accumulates more soluble FT at lower temperatures and exhibits reduced temperature sensitivity. Thus, cellular membranes sequester FT through their ability to bind the phospholipid PG, and this sequestration modulates the plant's response to temperature changes.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Membrana Celular/metabolismo , Florigena/metabolismo , Flores/metabolismo , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Transporte Activo de Núcleo Celular , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Fosfatidilgliceroles/metabolismo , Plantas Modificadas Genéticamente , Temperatura
6.
Front Plant Sci ; 12: 765995, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35003159

RESUMEN

In plants, a diverse set of pathways regulate the transition to flowering, leading to remarkable developmental flexibility. Although the importance of photoperiod in the regulation of flowering time is well known, increasing evidence suggests the existence of crosstalk among the flowering pathways regulated by photoperiod and metabolic pathways. For example, isoprenoid-derived phytohormones (abscisic acid, gibberellins, brassinosteroids, and cytokinins) play important roles in regulating flowering time. Moreover, emerging evidence reveals that other metabolites, such as chlorophylls and carotenoids, as well as sugar metabolism and sugar accumulation, also affect flowering time. In this review, we summarize recent findings on the roles of isoprenoid-derived metabolites and sugars in the regulation of flowering time and how day length affects these factors.

7.
Int J Mol Sci ; 23(1)2021 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-35008833

RESUMEN

Protein glycosylation requires dolichyl phosphate as a carbohydrate carrier. Dolichols are α-saturated polyprenols, and their saturation in S. cerevisiae is catalyzed by polyprenyl reductase Dfg10 together with some other unknown enzymes. The aim of this study was to identify such enzymes in Candida. The Dfg10 polyprenyl reductase from S. cerevisiae comprises a C-terminal 3-oxo-5-alpha-steroid 4-dehydrogenase domain. Alignment analysis revealed such a domain in two ORFs (orf19.209 and orf19.3293) from C. albicans, which were similar, respectively, to Dfg10 polyprenyl reductase and Tsc13 enoyl-transferase from S. cerevisiae. Deletion of orf19.209 in Candida impaired saturation of polyprenols. The Tsc13 homologue turned out not to be capable of saturating polyprenols, but limiting its expression reduce the cellular level of dolichols and polyprenols. This reduction was not due to a decreased expression of genes encoding cis-prenyltransferases from the dolichol branch but to a lower expression of genes encoding enzymes of the early stages of the mevalonate pathway. Despite the resulting lower consumption of acetyl-CoA, the sole precursor of the mevalonate pathway, it was not redirected towards fatty acid synthesis or elongation. Lowering the expression of TSC13 decreased the expression of the ACC1 gene encoding acetyl-CoA carboxylase, the key regulatory enzyme of fatty acid synthesis and elongation.


Asunto(s)
Candida albicans/metabolismo , Dolicoles/biosíntesis , Ácidos Grasos/metabolismo , Acetilcoenzima A/metabolismo , Secuencia de Aminoácidos , Candida albicans/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Genes Fúngicos , Humanos , Hifa/crecimiento & desarrollo , Ácido Mevalónico/metabolismo , Mutación/genética , Filogenia , Poliprenoles/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Especificidad por Sustrato
8.
Development ; 148(1)2021 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-33268452

RESUMEN

PHOSPHORYLETHANOLAMINE CYTIDYLYLTRANSFERASE 1 (PECT1) regulates phosphatidylethanolamine biosynthesis and controls the phosphatidylethanolamine:phosphatidylcholine ratio in Arabidopsis thaliana Previous studies have suggested that PECT1 regulates flowering time by modulating the interaction between phosphatidylcholine and FLOWERING LOCUS T (FT), a florigen, in the shoot apical meristem (SAM). Here, we show that knockdown of PECT1 by artificial microRNA in the SAM (pFD::amiR-PECT1) accelerated flowering under inductive and even non-inductive conditions, in which FT transcription is almost absent, and in ft-10 twin sister of ft-1 double mutants under both conditions. Transcriptome analyses suggested that PECT1 affects flowering by regulating SHORT VEGETATIVE PHASE (SVP) and GIBBERELLIN 20 OXIDASE 2 (GA20ox2). SVP misexpression in the SAM suppressed the early flowering of pFD::amiR-PECT1 plants. pFD::amiR-PECT1 plants showed increased gibberellin (GA) levels in the SAM, concomitant with the reduction of REPRESSOR OF GA1-3 levels. Consistent with this, GA treatment had little effect on flowering time of pFD::amiR-PECT1 plants and the GA antagonist paclobutrazol strongly affected flowering in these plants. Together, these results suggest that PECT1 also regulates flowering time through a florigen-independent pathway, modulating SVP expression and thus regulating GA production.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Florigena/metabolismo , Flores/fisiología , Nucleotidiltransferasas/metabolismo , Factores de Transcripción/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Flores/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Giberelinas/metabolismo , Meristema/metabolismo , Oxigenasas de Función Mixta/metabolismo , Plantas Modificadas Genéticamente , Factores de Transcripción/genética
9.
Int J Mol Sci ; 21(21)2020 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-33121126

RESUMEN

Nonsense-mediated mRNA decay (NMD) removes aberrant transcripts to avoid the accumulation of truncated proteins. NMD regulates nucleotide-binding, leucine-rich repeat (NLR) genes to prevent autoimmunity; however, the function of a large number of NLRs still remains poorly understood. Here, we show that three NLR genes (AT1G72910, AT1G72940, and ADR1-LIKE 2) are important for NMD-mediated regulation of defense signaling at lower temperatures. At 16 °C, the NMD-compromised up-frameshift protein1 (upf1) upf3 mutants showed growth arrest that can be rescued by the artificial miRNA-mediated knockdown of the three NLR genes. mRNA levels of these NLRs are induced by Pseudomonas syringae inoculation and exogenous SA treatment. Mutations in AT1G72910, AT1G72940, and ADR1-LIKE 2 genes resulted in increased susceptibility to Pseudomonas syringae, whereas their overexpression resulted in severely stunted growth, which was dependent on basal disease resistance genes. The NMD-deficient upf1 upf3 mutants accumulated higher levels of NMD signature-containing transcripts from these NLR genes at 16 °C. Furthermore, mRNA degradation kinetics showed that these NMD signature-containing transcripts were more stable in upf1 upf3 mutants. Based on these findings, we propose that AT1G72910, AT1G72940, and ADR1-LIKE 2 are directly regulated by NMD in a temperature-dependent manner and play an important role in modulating plant immunity at lower temperatures.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Degradación de ARNm Mediada por Codón sin Sentido , Pseudomonas syringae/patogenicidad , Arabidopsis/genética , Arabidopsis/microbiología , Frío , Regulación de la Expresión Génica de las Plantas , Secuenciación de Nucleótidos de Alto Rendimiento , Mutación , Inmunidad de la Planta , ARN Helicasas/genética , Análisis de Secuencia de ARN
10.
Sci Rep ; 10(1): 13264, 2020 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-32764679

RESUMEN

The cis-polyisoprenoid lipids namely polyprenols, dolichols and their derivatives are linear polymers of several isoprene units. In eukaryotes, polyprenols and dolichols are synthesized as a mixture of four or more homologues of different length with one or two predominant species with sizes varying among organisms. Interestingly, co-occurrence of polyprenols and dolichols, i.e. detection of a dolichol along with significant levels of its precursor polyprenol, are unusual in eukaryotic cells. Our metabolomics studies revealed that cis-polyisoprenoids are more diverse in the malaria parasite Plasmodium falciparum than previously postulated as we uncovered active de novo biosynthesis and substantial levels of accumulation of polyprenols and dolichols of 15 to 19 isoprene units. A distinctive polyprenol and dolichol profile both within the intraerythrocytic asexual cycle and between asexual and gametocyte stages was observed suggesting that cis-polyisoprenoid biosynthesis changes throughout parasite's development. Moreover, we confirmed the presence of an active cis-prenyltransferase (PfCPT) and that dolichol biosynthesis occurs via reduction of the polyprenol to dolichol by an active polyprenol reductase (PfPPRD) in the malaria parasite.


Asunto(s)
Dolicoles/aislamiento & purificación , Metabolómica/métodos , Plasmodium falciparum/crecimiento & desarrollo , Vías Biosintéticas , Dolicoles/biosíntesis , Regulación del Desarrollo de la Expresión Génica , Plasmodium falciparum/metabolismo , Poliprenoles/aislamiento & purificación , Poliprenoles/metabolismo , Proteínas Protozoarias/genética
11.
Eur J Pharm Biopharm ; 155: 199-209, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32750413

RESUMEN

Lipofection is a widely used molecular biology technique and one of the most promising non-viral gene therapy strategies. However, one of the main drawbacks of using cationic lipids-based lipoplexes in DNA/RNA delivery is serum-associated inhibition of transfection. We have addressed this issue using PTAI (trimethylpolyprenylammonium iodides)-based lipofection model. To overcome serum-sensitivity we used 100 different formulations based on different PTAI, various helper lipids compositions, lipoplex surface modifications with polyethylene glycol (PEG), and precondensation of DNA with poly-L-lysine (PLL). Multicomponent helper lipids compositions boosted serum resistance and largely improved long-term storage of PTAI-based reagents. This was observed, in particular, for PTAI with longer isoprenoid chains. Additionally, our PTAI-based carriers were efficient for DNA and RNA delivery and safe for human red blood cells (RBC). Moreover, a broad array of the modifications used resulted in an important observation - a diverse susceptibility of various cell types to different compositions was noted. Overall, our results show that helper lipids composition mediates efficient serum-resistant DNA/RNA lipofection. Additionally, multicomponent PTAI-based reagents are promising gene delivery carriers both, at the cellular and organismal level.


Asunto(s)
Eritrocitos/metabolismo , Terapia Genética/métodos , Lípidos/administración & dosificación , Lípidos/farmacocinética , Animales , Cationes , Línea Celular Tumoral , Estabilidad de Medicamentos , Almacenaje de Medicamentos , Eritrocitos/efectos de los fármacos , Terapia Genética/tendencias , Células HEK293 , Humanos , Lípidos/química , Ratas
12.
Int J Mol Sci ; 20(12)2019 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-31234450

RESUMEN

 Mono-saturated polyprenols (dolichols) have been found in almost all Eukaryotic cells, however, dolichols containing additional saturated bonds at the ω-end, have been identified in A. fumigatus and A. niger. Here we confirm using an LC-ESI-QTOF-MS analysis, that poly-saturated dolichols are abundant in other filamentous fungi, Trichoderma reesei, A. nidulans and Neurospora crassa, while the yeast Saccharomyces cerevisiae only contains the typical mono-saturated dolichols. We also show, using differential scanning calorimetry (DSC) and fluorescence anisotropy of 1,6-diphenyl-l,3,5-hexatriene (DPH) that the structure of dolichols modulates the properties of membranes and affects the functioning of dolichyl diphosphate mannose synthase (DPMS). The activity of this enzyme from T. reesei and S. cerevisiae was strongly affected by the structure of dolichols. Additionally, the structure of phosphatidylcholine (PC) and phosphatidylethanolamine (PE) model membranes was more strongly disturbed by the poly-saturated dolichols from Trichoderma than by the mono-saturated dolichols from yeast. By comparing the lipidome of filamentous fungi with that from S. cerevisiae, we revealed significant differences in the PC/PE ratio and fatty acids composition. Filamentous fungi differ from S. cerevisiae in the lipid composition of their membranes and the structure of dolichols. The structure of dolichols profoundly affects the functioning of dolichol-dependent enzyme, DPMS.


Asunto(s)
Dolicoles/metabolismo , Proteínas Fúngicas/metabolismo , Hongos/metabolismo , Glicosiltransferasas/metabolismo , Aspergillus niger/química , Aspergillus niger/metabolismo , Membrana Celular/química , Membrana Celular/metabolismo , Dolicoles/análisis , Hongos/química , Lípidos de la Membrana/química , Lípidos de la Membrana/metabolismo , Modelos Moleculares , Neurospora crassa/química , Neurospora crassa/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Espectrometría de Masa por Ionización de Electrospray , Trichoderma/química , Trichoderma/metabolismo
13.
Nat Commun ; 9(1): 3963, 2018 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-30262913

RESUMEN

The alarming rise of antimicrobial resistance requires antibiotics with unexploited mechanisms. Ideal templates could be antibiotics that target the peptidoglycan precursor lipid II, known as the bacterial Achilles heel, at an irreplaceable pyrophosphate group. Such antibiotics would kill multidrug-resistant pathogens at nanomolecular concentrations without causing antimicrobial resistance. However, due to the challenge of studying small membrane-embedded drug-receptor complexes in native conditions, the structural correlates of the pharmaceutically relevant binding modes are unknown. Here, using advanced highly sensitive solid-state NMR setups, we present a high-resolution approach to study lipid II-binding antibiotics directly in cell membranes. On the example of nisin, the preeminent lantibiotic, we show that the native antibiotic-binding mode strongly differs from previously published structures, and we demonstrate that functional hotspots correspond to plastic drug domains that are critical for the cellular adaptability of nisin. Thereby, our approach provides a foundation for an improved understanding of powerful antibiotics.


Asunto(s)
Antibacterianos/farmacología , Membrana Celular/química , Espectroscopía de Resonancia Magnética , Secuencia de Aminoácidos , Lípidos/química , Modelos Moleculares , Nisina/química
14.
Hypertens Res ; 41(4): 234-245, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29440705

RESUMEN

Novel lipid-based carriers, composed of cationic derivatives of polyisoprenoid alcohols (amino-prenols, APrens) and 1,2-dioleoyl-sn-glycero-3-phosphatidylethanolamine (DOPE), were designed. The carriers, which were previously shown to be nontoxic to living organisms, were now tested if suitable for administration of candesartan, an antihypertensive drug. Spontaneously hypertensive rats (SHR) received injections of candesartan (0.1 mg/kg body weight per day; s.c.) in freshly prepared carriers for two weeks. The rats' arterial pressure was measured by telemetry. Urine and blood collection were performed in metabolic cages. In a separate group of SHR, the pharmacokinetics of the new formulation was evaluated after a single subcutaneous injection. The antihypertensive activity of candesartan administered in DOPE dispersions containing APrens was distinctly greater than that of candesartan dispersions composed of DOPE only or administered in the classic solvent (sodium carbonate). The pharmacokinetic parameters clearly demonstrated that candesartan in APren carriers reached the bloodstream more rapidly and in much greater concentration (almost throughout the whole observation) than the same drug administered in dispersions of DOPE only or in solvent. Serum creatinine (PCr) decreased significantly only in the group receiving candesartan in carriers with APrens (from 0.80 ± 0.04 to 0.66 ± 0.09 mg/dl; p < 0.05), whereas in the other groups PCr remained at the same level after treatment. Moreover, the new derivatives increased the loading capacity of the carriers, which is a valuable feature for any drug delivery system. Taken together, our findings led us to conclude that APrens are potentially valuable components of lipid-based drug carriers.


Asunto(s)
Alcoholes/química , Antihipertensivos/farmacología , Bencimidazoles/farmacología , Lípidos/química , Tetrazoles/farmacología , Animales , Antihipertensivos/farmacocinética , Bencimidazoles/farmacocinética , Compuestos de Bifenilo , Presión Sanguínea/efectos de los fármacos , Cationes , Portadores de Fármacos , Composición de Medicamentos , Sistemas de Liberación de Medicamentos , Sinergismo Farmacológico , Masculino , Ratas , Ratas Endogámicas SHR , Telemetría , Tetrazoles/farmacocinética
15.
Virol J ; 14(1): 168, 2017 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-28865454

RESUMEN

BACKGROUND: Cationic derivatives of polyprenols (trimethylpolyprenylammonium iodides - PTAI) with variable chain length between 6 and 15 isoprene units prepared from naturally occurring poly-cis-prenols were tested as DNA vaccine carriers in chickens and mice. This study aimed to investigate if PTAI could be used as an efficient carrier of a DNA vaccine. METHODS: Several vaccine mixtures were prepared by combining different proportions of the vaccine plasmid (carrying cDNA encoding a vaccine antigen, hemagglutinin from H5N1 influenza virus) and various compositions of PTAI. The vaccines were delivered by intramuscular injection to either chickens or mice. The presence of specific antibodies in sera collected from the immunized animals was analyzed by enzyme-linked immunosorbent assay (ELISA) and hemagglutination inhibition (HI) test. RESULTS: The mixtures of PTAI with helper lipids, such as DOPE (1,2-dioleoyl-sn-glycero-3-phosphatidylethanolamine), DC-cholesterol [{3ß-[N-(N',N'-dimethylaminoethane)-carbamoyl] cholesterol} hydrochloride] or DOPC (1,2-dioleoyl-sn-glycero-3-phosphatidylcholine) induced strong humoral response to the antigen encoded by the DNA vaccine plasmid. CONCLUSION: The animal immunization results confirmed that PTAI compositions, especially mixtures of PTAI with DOPE and DC-cholesterol, do work as effective carriers of DNA vaccines, comparable to the commercially available lipid transfection reagent.


Asunto(s)
Sistemas de Liberación de Medicamentos , Inmunidad Humoral/inmunología , Vacunas contra la Influenza/inmunología , Vacunación/métodos , Vacunas de ADN/inmunología , Compuestos de Amonio/administración & dosificación , Compuestos de Amonio/química , Animales , Anticuerpos Antivirales/sangre , Cationes/química , Pollos , Modelos Animales de Enfermedad , Femenino , Vacunas contra la Influenza/administración & dosificación , Yoduros/administración & dosificación , Yoduros/química , Masculino , Ratones , Ratones Endogámicos BALB C , Compuestos de Amonio Cuaternario/administración & dosificación , Compuestos de Amonio Cuaternario/química , Vacunas de ADN/administración & dosificación
16.
Plant Cell ; 29(7): 1709-1725, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28655749

RESUMEN

Plants accumulate a family of hydrophobic polymers known as polyprenols, yet how they are synthesized, where they reside in the cell, and what role they serve is largely unknown. Using Arabidopsis thaliana as a model, we present evidence for the involvement of a plastidial cis-prenyltransferase (AtCPT7) in polyprenol synthesis. Gene inactivation and RNAi-mediated knockdown of AtCPT7 eliminated leaf polyprenols, while its overexpression increased their content. Complementation tests in the polyprenol-deficient yeast ∆rer2 mutant and enzyme assays with recombinant AtCPT7 confirmed that the enzyme synthesizes polyprenols of ∼55 carbons in length using geranylgeranyl diphosphate (GGPP) and isopentenyl diphosphate as substrates. Immunodetection and in vivo localization of AtCPT7 fluorescent protein fusions showed that AtCPT7 resides in the stroma of mesophyll chloroplasts. The enzymatic products of AtCPT7 accumulate in thylakoid membranes, and in their absence, thylakoids adopt an increasingly "fluid membrane" state. Chlorophyll fluorescence measurements from the leaves of polyprenol-deficient plants revealed impaired photosystem II operating efficiency, and their thylakoids exhibited a decreased rate of electron transport. These results establish that (1) plastidial AtCPT7 extends the length of GGPP to ∼55 carbons, which then accumulate in thylakoid membranes; and (2) these polyprenols influence photosynthetic performance through their modulation of thylakoid membrane dynamics.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Fotosíntesis/fisiología , Plastidios/metabolismo , Transferasas/metabolismo , Proteínas de Arabidopsis/genética , Dimetilaliltranstransferasa/genética , Dimetilaliltranstransferasa/metabolismo , Prueba de Complementación Genética , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Plantas Modificadas Genéticamente , Fosfatos de Poliisoprenilo/metabolismo , Interferencia de ARN , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Especificidad por Sustrato , Tilacoides/metabolismo , Transferasas/genética
17.
J Gene Med ; 18(11-12): 331-342, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27706881

RESUMEN

BACKGROUND: One of the major challenges limiting the development of gene therapy is an absence of efficient and safe gene carriers. Among the nonviral gene delivery methods, lipofection is considered as one of the most promising. In the present study, a set of cationic polyprenyl derivatives [trimethylpolyprenylammonium iodides (PTAI)] with different lengths of polyprenyl chains (from 7, 8 and 11 to 15 isoprene units) was suggested as a component of efficient DNA vehicles. METHODS: Optimization studies were conducted for PTAI in combination with co-lipid dioleoylphosphatidylethanolamine on DU145 human prostate cancer cells using: size and zeta potential measurements, confocal microscopy, the fluorescein diacetate/ethidium bromide test, cell counting, time-lapse monitoring of cell movement, gap junctional intercellular coupling analysis, antimicrobial activity assay and a red blood cell hemolysis test. RESULTS: The results obtained show that the lipofecting activity of PTAI allows effective transfection of plasmid DNA complexed in negatively-charged lipoplexes of 200-500 nm size into cells without significant side effects on cell physiology (viability, proliferation, morphology, migration and gap junctional intercellular coupling). Moreover, PTAI-based vehicles exhibit a potent bactericidal activity against Staphylococcus aureus and Escherichia coli. The developed anionic lipoplexes are safe towards human red blood cell membranes, which are not disrupted in their presence. CONCLUSIONS: The developed carriers constitute a group of promising lipofecting agents of a new type that can be utilized as effective lipofecting agents in vitro and they are also an encouraging basis for in vivo applications.


Asunto(s)
Compuestos de Amonio/toxicidad , Terpenos/toxicidad , Transfección , Compuestos de Amonio/química , Aniones , Antibacterianos/química , Antibacterianos/toxicidad , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Evaluación Preclínica de Medicamentos , Escherichia coli , Terapia Genética , Hemolíticos/química , Hemolíticos/toxicidad , Humanos , Liposomas , Tamaño de la Partícula , Staphylococcus aureus , Terpenos/química
18.
J Biol Chem ; 291(29): 15057-68, 2016 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-27226570

RESUMEN

Phospho-MurNAc-pentapeptide translocase (MraY) catalyzes the synthesis of Lipid I, a bacterial peptidoglycan precursor. As such, MraY is essential for bacterial survival and therefore is an ideal target for developing novel antibiotics. However, the understanding of its catalytic mechanism, despite the recently determined crystal structure, remains limited. In the present study, the kinetic properties of Bacillus subtilis MraY (BsMraY) were investigated by fluorescence enhancement using dansylated UDP-MurNAc-pentapeptide and heptaprenyl phosphate (C35-P, short-chain homolog of undecaprenyl phosphate, the endogenous substrate of MraY) as second substrate. Varying the concentrations of both of these substrates and fitting the kinetics data to two-substrate models showed that the concomitant binding of both UDP-MurNAc-pentapeptide-DNS and C35-P to the enzyme is required before the release of the two products, Lipid I and UMP. We built a model of BsMraY and performed docking studies with the substrate C35-P to further deepen our understanding of how MraY accommodates this lipid substrate. Based on these modeling studies, a novel catalytic role was put forward for a fully conserved histidine residue in MraY (His-289 in BsMraY), which has been experimentally confirmed to be essential for MraY activity. Using the current model of BsMraY, we propose that a small conformational change is necessary to relocate the His-289 residue, such that the translocase reaction can proceed via a nucleophilic attack of the phosphate moiety of C35-P on bound UDP-MurNAc-pentapeptide.


Asunto(s)
Bacillus subtilis/enzimología , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Transferasas/química , Transferasas/metabolismo , Sustitución de Aminoácidos , Bacillus subtilis/genética , Proteínas Bacterianas/genética , Catálisis , Cinética , Modelos Moleculares , Monosacáridos/metabolismo , Mutagénesis Sitio-Dirigida , Oligopéptidos/metabolismo , Fosfatos de Poliisoprenilo/metabolismo , Conformación Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato , Transferasas/genética , Transferasas (Grupos de Otros Fosfatos Sustitutos) , Uridina Difosfato Ácido N-Acetilmurámico/análogos & derivados , Uridina Difosfato Ácido N-Acetilmurámico/metabolismo , Uridina Monofosfato/metabolismo
19.
PLoS One ; 11(4): e0153633, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27088717

RESUMEN

PURPOSE: Prenyl ammonium iodides (Amino-Prenols, APs), semi-synthetic polyprenol derivatives were studied as prospective novel gene transfer agents. METHODS: AP-7, -8, -11 and -15 (aminoprenols composed of 7, 8, 11 or 15 isoprene units, respectively) were examined for their capacity to form complexes with pDNA, for cytotoxicity and ability to transfect genes to cells. RESULTS: All the carriers were able to complex DNA. The highest, comparable to commercial reagents, transfection efficiency was observed for AP-15. Simultaneously, AP-15 exhibited the lowest negative impact on cell viability and proliferation--considerably lower than that of commercial agents. AP-15/DOPE complexes were also efficient to introduce pDNA to cells, without much effect on cell viability. Transfection with AP-15/DOPE complexes influenced the expression of a very few among 44 tested genes involved in cellular lipid metabolism. Furthermore, complexes containing AP-15 and therapeutic plasmid, encoding the TIMP metallopeptidase inhibitor 2 (TIMP2), introduced the TIMP2 gene with high efficiency to B16-F10 melanoma cells but not to B16-F10 melanoma tumors in C57BL/6 mice, as confirmed by TIMP2 protein level determination. CONCLUSION: Obtained results indicate that APs have a potential as non-viral vectors for cell transfection.


Asunto(s)
Compuestos de Amonio/farmacología , ADN/administración & dosificación , Sistemas de Liberación de Medicamentos , Terapia Genética , Melanoma Experimental/terapia , Neopreno/química , Sarcoma Experimental/terapia , Animales , Western Blotting , Supervivencia Celular , Portadores de Fármacos , Femenino , Técnicas de Transferencia de Gen , Técnicas para Inmunoenzimas , Liposomas , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/secundario , Neoplasias Pulmonares/terapia , Melanoma Experimental/genética , Melanoma Experimental/patología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Sarcoma Experimental/genética , Sarcoma Experimental/patología , Transfección , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
20.
Plant Cell ; 27(12): 3336-53, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26628744

RESUMEN

Dolichol is a required cofactor for protein glycosylation, the most common posttranslational modification modulating the stability and biological activity of proteins in all eukaryotic cells. We have identified and characterized two genes, PPRD1 and -2, which are orthologous to human SRD5A3 (steroid 5α reductase type 3) and encode polyprenol reductases responsible for conversion of polyprenol to dolichol in Arabidopsis thaliana. PPRD1 and -2 play dedicated roles in plant metabolism. PPRD2 is essential for plant viability; its deficiency results in aberrant development of the male gametophyte and sporophyte. Impaired protein glycosylation seems to be the major factor underlying these defects although disturbances in other cellular dolichol-dependent processes could also contribute. Shortage of dolichol in PPRD2-deficient cells is partially rescued by PPRD1 overexpression or by supplementation with dolichol. The latter has been discussed as a method to compensate for deficiency in protein glycosylation. Supplementation of the human diet with dolichol-enriched plant tissues could allow new therapeutic interventions in glycosylation disorders. This identification of PPRD1 and -2 elucidates the factors mediating the key step of the dolichol cycle in plant cells which makes manipulation of dolichol content in plant tissues feasible.


Asunto(s)
Arabidopsis/enzimología , Dolicoles/metabolismo , Oxidorreductasas/metabolismo , Procesamiento Proteico-Postraduccional , Arabidopsis/genética , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Glicosilación , Mutación , Oxidorreductasas/genética , Infertilidad Vegetal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...