Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(15)2023 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-37569518

RESUMEN

Homotypic entosis is a phenomenon in which one cancer cell invades a neighboring cancer cell and is closed entirely within its entotic vacuole. The fate of entosis can lead to inner cell death or survival. Recent evidence draws attention to entosis as a novel prognostic marker in breast cancer. Nevertheless, little is known about the quantity and quality of the process of entosis in human cancer specimens. Here, for the first time, we analyze the frequency of entotic figures in a case of NOS (Non-Other Specified) breast cancer with regard to location: the primary tumor, regional lymph node, and distant metastasis. For the identification of entotic figures, cells were stained using hematoxylin/eosin and assessed using criteria proposed by Mackay. The majority of entotic figures (65%) were found in the lymph node, 27% were found in the primary tumor, and 8% were found in the far metastasis. In the far metastases, entotic figures demonstrated an altered, atypic morphology. Interestingly, in all locations, entosis did not show any signs of cell death. Moreover, the slides were stained for E-cadherin or Ki67, and we identified proliferating (Ki67-positive) inner and outer entotic cells. Therefore, we propose additional criteria for the identification of pro-survival entotic structures in diagnostic histopathology.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Entosis/fisiología , Antígeno Ki-67 , Muerte Celular
2.
Comput Struct Biotechnol J ; 21: 3810-3826, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37560122

RESUMEN

The intracellular level of podoplanin (PDPN), a transmembrane protein of still unclear function, is frequently altered in metastatic tumors. High expression of PDPN is frequently observed in papillary thyroid cancer (PTC) specimens. Similarly, PTC-derived cell lines (BCPAP and TPC1, harboring the BRAF V600E mutation and RET/PTC1 fusion, respectively), also present enhanced PDPN yield. We previously reported that depletion of PDPN impairs migration of TPC1 cells, but augments metastasis of BCPAP cells. Interestingly, this phenomenon stays in contrast to the migratory pattern observed for wild-type cells, where TPC1 exhibited higher motility than BCPAP cells. Here, we aimed to elucidate the potential role of PDPN in regulation of molecular mechanisms leading to the diverse metastatic features of the studied PTC-derived cells. We consider that this phenomenon may be caused by alternative regulation of signaling pathways due to the presence of the mutated BRAF allele or RET/PTC1 fusion. The high-throughput RNA sequencing (RNA-seq) technique was used to uncover the genes and signaling pathways affected in wild-type and PDPN-depleted TPC1 and BCPAP cells. We found that changes in the expression of various factors of signaling pathways, like RHOA and RAC1 GTPases and their regulators, are linked with both high PDPN levels and presence of the BRAF V600E mutation. We imply that the suppressed motility of wild-type BCPAP cells results from overactivation of RHOA through natively high PDPN expression. This process is accompanied by inhibition of the PI3K kinase and consequently RAC1, due to overactivation of RAS-mediated signaling and the PTEN regulator.

3.
Int J Mol Sci ; 24(7)2023 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-37047791

RESUMEN

Homotypic entotic figures, which are a form of "cell-in-cell" structures, are considered a potential novel independent prognostic marker in various cancers. Nevertheless, the knowledge concerning the biological role of this phenomenon is still unclear. Since breast cancer cells are remarkably entosis-competent, we aimed to investigate and compare the frequency of entoses in a primary breast tumor and in its lymph node metastasis. Moreover, as there are limited data on defined molecular markers of entosis, we investigated entosis in correlation with classical breast cancer biomarkers used in routine pathomorphological diagnostics (HER2, ER, PR, and Ki67). In the study, a cohort of entosis-positive breast cancer samples paired into primary lesions and lymph node metastases was used. The inclusion criteria were a diagnosis of NOS cancer, lymph node metastases, the presence of entotic figures in the primary lesion, and/or lymph node metastases. In a selected, double-negative, HER2-positive NOS breast cancer case, entoses were characterized by a correlation between an epithelial-mesenchymal transition and proliferation markers. We observed that in the investigated cohort entotic figures were positively correlated with Ki67 and HER2, but not with ER or PR markers. Moreover, for the first time, we identified Ki67-positive mitotic inner entotic cells in clinical carcinoma samples. Our study performed on primary and secondary breast cancer specimens indicated that entotic figures, when examined by routine HE histological staining, present potential diagnostic value, since they correlate with two classical prognostic factors of breast cancer.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/patología , Biomarcadores de Tumor , Antígeno Ki-67 , Receptor ErbB-2 , Entosis , Metástasis Linfática , Receptores de Estrógenos , Receptores de Progesterona
4.
Biomedicines ; 10(7)2022 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-35884903

RESUMEN

Glioblastoma (GBM) is the most commonly diagnosed and most lethal primary malignant brain tumor in adults. Standard treatments are ineffective, and despite promising results obtained in early phases of experimental clinical trials, the prognosis of GBM remains unfavorable. Therefore, there is need for exploration and development of innovative methods that aim to establish new therapies or increase the effectiveness of existing therapies. One of the most exciting new strategies enabling combinatory treatment is the usage of nanocarriers loaded with chemotherapeutics and/or other anticancer compounds. Nanocarriers exhibit unique properties in antitumor therapy, as they allow highly efficient drug transport into cells and sustained intracellular accumulation of the delivered cargo. They can be infused into and are retained by GBM tumors, and potentially can bypass the blood-brain barrier. One of the most promising and extensively studied groups of nanostructured therapeutics are metal-based nanoparticles. These theranostic nanocarriers demonstrate relatively low toxicity, thus they might be applied for both diagnosis and therapy. In this article, we provide an update on metal-based nanostructured constructs in the treatment of GBM. We focus on the interaction of metal nanoparticles with various forms of electromagnetic radiation for use in photothermal, photodynamic, magnetic hyperthermia and ionizing radiation sensitization applications.

5.
Cells ; 10(10)2021 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-34685548

RESUMEN

A phenomenon known for over 100 years named "cell-in-cell" (CIC) is now undergoing its renaissance, mostly due to modern cell visualization techniques. It is no longer an esoteric process studied by a few cell biologists, as there is increasing evidence that CICs may have prognostic and diagnostic value for cancer patients. There are many unresolved questions stemming from the difficulties in studying CICs and the limitations of current molecular techniques. CIC formation involves a dynamic interaction between an outer or engulfing cell and an inner or engulfed cell, which can be of the same (homotypic) or different kind (heterotypic). Either one of those cells appears to be able to initiate this process, which involves signaling through cell-cell adhesion, followed by cytoskeleton activation, leading to the deformation of the cellular membrane and movements of both cells that subsequently result in CICs. This review focuses on the distinction of five known forms of CIC (cell cannibalism, phagoptosis, enclysis, entosis, and emperipolesis), their unique features, characteristics, and underlying molecular mechanisms.


Asunto(s)
Comunicación Celular/fisiología , Entosis/fisiología , Emperipolesis/fisiología , Humanos
6.
Int J Mol Sci ; 22(13)2021 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-34201607

RESUMEN

BACKGROUND: Thyroid carcinoma (TC) is the most common endocrine system malignancy, and papillary thyroid carcinoma (PTC) accounts for >80% of all TC cases. Nevertheless, PTC pathogenesis is still not fully understood. The aim of the study was to elucidate the role of the FRMD5 protein in the regulation of biological pathways associated with the development of PTC. We imply that the presence of certain genetic aberrations (e.g., BRAF V600E mutation) is associated with the activity of FRMD5. METHODS: The studies were conducted on TPC1 and BCPAP (BRAF V600E) model PTC-derived cells. Transfection with siRNA was used to deplete the expression of FRMD5. The mRNA expression and protein yield were evaluated using RT-qPCR and Western blot techniques. Proliferation, migration, invasiveness, adhesion, spheroid formation, and survival tests were performed. RNA sequencing and phospho-kinase proteome profiling were used to assess signaling pathways associated with the FRMD5 expressional status. RESULTS: The obtained data indicate that the expression of FRMD5 is significantly enhanced in BRAF V600E tumor specimens and cells. It was observed that a drop in intracellular yield of FRMD5 results in significant alternations in the migration, invasiveness, adhesion, and spheroid formation potential of PTC-derived cells. Importantly, significant divergences in the effect of FRMD5 depletion in both BRAF-wt and BRAF-mutated PTC cells were observed. It was also found that knockdown of FRMD5 significantly alters the expression of multidrug resistant genes. CONCLUSIONS: This is the first report highlighting the importance of the FRMD5 protein in the biology of PTCs. The results suggest that the FRMD5 protein can play an important role in controlling the metastatic potential and multidrug resistance of thyroid tumor cells.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Cáncer Papilar Tiroideo/patología , Neoplasias de la Tiroides/patología , Proteínas Supresoras de Tumor/genética , Apoptosis/genética , Estudios de Casos y Controles , Adhesión Celular/genética , Línea Celular Tumoral , Movimiento Celular , Resistencia a Antineoplásicos/genética , Humanos , Mutación , Proteínas Proto-Oncogénicas B-raf/genética , Esferoides Celulares/patología , Cáncer Papilar Tiroideo/tratamiento farmacológico , Cáncer Papilar Tiroideo/genética , Neoplasias de la Tiroides/tratamiento farmacológico , Neoplasias de la Tiroides/genética , Proteínas Supresoras de Tumor/metabolismo
7.
Nutr Cancer ; 71(2): 334-347, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30676767

RESUMEN

Multidrug resistance is one of the key barriers suppressing the effectiveness of drug therapies of malignant tumors. Here, we report a study on the effect of a mix of natural extracts (MIX2) prepared from fresh fruits of Prunus spinosa, Crataegus monogyna, Sorbus aucuparia, and Euonymus europaeus on the classic hallmarks of cancer cells and the expression of multidrug resistance proteins. In the studies, HeLa and T98G cell lines, and classic methods of molecular biology, including RT-qPCR, Western blot, flow cytometry, and confocal imaging, were used. Additionally, migration, adhesion, and proliferation assays were performed. The obtained results indicate that the MIX2 cocktail presents strong anti-cancer properties. MIX2 is not toxic, but at the same time significantly alters the migration, proliferation, and adhesion of tumor cells. Furthermore, it was found that cells exposed to the mixture presented a significantly reduced expression level of genes associated with MDR, including ABCB1, which encodes for glycoprotein P. In vitro data showed that MIX2 effectively sensitizes tumor cells to doxorubicin. We postulate that modulation of the multidrug resistance phenotype of tumors with the use of MIX2 may be considered as a safe and applicable tool in sustaining drug delivery therapies of malignancies.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Neoplasias/tratamiento farmacológico , Extractos Vegetales/farmacología , Subfamilia B de Transportador de Casetes de Unión a ATP/antagonistas & inhibidores , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Crataegus/química , Resistencia a Múltiples Medicamentos , Resistencia a Antineoplásicos , Euonymus/química , Células HeLa , Humanos , Neoplasias/metabolismo , Neoplasias/patología , Prunus/química , Sorbus/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...