Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Curr Neuropharmacol ; 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38860903

RESUMEN

Diabetes, a widespread chronic metabolic disease, is projected to affect 783 million people globally by 2045. Recent studies emphasize the neuroprotective potential of dipeptidyl peptidase 4 (DPP4i) inhibitors, pointing toward a promising avenue for intervention in addressing cognitive challenges associated with diabetes. Due to limited data on the effect of DPP4i on brain pathways involved in diabetes-related neurocognitive disorders, the decision was made to conduct this study to fill existing knowledge gaps on this topic. The primary aim of our study was to evaluate the potential of DPP4 inhibitors (DPP4i) in preventing cognitive decline in mice with type 2 diabetes (T2D), placing special emphasis on gaining insight into the complex molecular mechanisms underlying this action. We examined drug efficacy in modulating neurotrophic factors, calcium levels, and the expression of key genes (HIF1α, APP, Arc) crucial for neural plasticity. Conducting cognitive assessments with the hole board and passive avoidance tests, we discerned a remarkable influence of short-term gliptin usage on the limiting progress of cognitive dysfunction in diabetic mice. The administration of DPP4 inhibitors led to heightened neurotrophin levels, increased HIF1α in the prefrontal cortex, and a significant elevation in Arc mRNA levels. Our findings reveal that DPP4 inhibitors effectively limit the progression of diabetes-related cognitive disorders. This breakthrough discovery not only opens new research avenues but also constitutes a potential starting point for creating innovative strategies for the treatment of central nervous system disorders focused on improving cognitive abilities.

2.
Toxicol In Vitro ; 95: 105741, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38030050

RESUMEN

Due to the variability and ability of tumor to mutate, as well as the heterogeneity of tumor tissue, such drugs are sought that would act selectively and multidirectionally on the cancer cell. Therefore, two newly synthesized semicarbazide structured substances were evaluated for anticancer properties in our study: 1a and 1b. In order to evaluate the cytotoxicity and selectivity of the tested compounds, MTT and Neutral Red uptake assay on cell lines (HEK293, LN229, 769-P, HepG2 and NCI-H1563) and cell cycle analysis were performed. Acute toxicity and cardiotoxicity were also evaluated in the zebrafish model. The tested compounds (1a, 1b) showed cytotoxic activity, with the greatest selectivity noted against the glioblastoma multiforme cell line (LN229). However, compound 1b showed stronger selective activity than 1a. Both of compounds were shown to significantly affect the M phase of the cell cycle. Whereas, the conducted toxicological examination of newly synthesized thiosemicarbazide derivates showed, that direct exposition of Danio rerio embryos to compound 1a, but not 1b, causes a concentration-dependent increase in developmental malformations, indicating possible teratogenic effects.


Asunto(s)
Neoplasias , Pez Cebra , Animales , Humanos , Células HEK293 , Semicarbacidas/toxicidad , Embrión no Mamífero
3.
Int J Mol Sci ; 24(24)2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38139308

RESUMEN

In this research, twenty-four hydrazide-hydrazones of 2,4-dihydroxybenzoic acid were designed, synthesized, and subjected to in vitro and in vivo bioactivity studies. The chemical structure of the obtained compounds was confirmed by spectral methods. Antimicrobial activity screening was performed against a panel of microorganisms for all synthesized hydrazide-hydrazones. The performed assays revealed the interesting antibacterial activity of a few substances against Gram-positive bacterial strains including MRSA-Staphylococcus aureus ATCC 43300 (compound 18: 2,4-dihydroxy-N-[(2-hydroxy-3,5-diiodophenyl)methylidene]benzohydrazide-Minimal Inhibitory Concentration, MIC = 3.91 µg/mL). In addition, we performed the in vitro screening of antiproliferative activity and also assessed the acute toxicity of six hydrazide-hydrazones. The following human cancer cell lines were used: 769-P, HepG2, H1563, and LN-229, and the viability of the cells was assessed using the MTT method. The HEK-293 cell line was used as a reference line. The toxicity was tested in vivo on Danio rerio embryos using the Fish Embryo Acute Toxicity (FET) test procedure according to OECD No. 236. The inhibitory concentration values obtained in the in vitro test showed that N-[(4-nitrophenyl)methylidene]-2,4-dihydroxybenzhydrazide (21) inhibited cancer cell proliferation the most, with an extremely low IC50 (Inhibitory Concentration) value, estimated at 0.77 µM for LN-229. In addition, each of the compounds tested was selective against cancer cell lines. The compounds with a nitrophenyl substituent were the most promising in terms of inhibition cancer cell proliferation. The toxicity against zebrafish embryos and larvae was also very low or moderate.


Asunto(s)
Antineoplásicos , Hidrazonas , Animales , Humanos , Hidrazonas/farmacología , Hidrazinas/farmacología , Hidrazinas/química , Células HEK293 , Pez Cebra , Relación Estructura-Actividad , Pruebas de Sensibilidad Microbiana , Antineoplásicos/química
4.
Pharmaceuticals (Basel) ; 16(12)2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38139817

RESUMEN

Two polyphenols-hyperoside (HYP) and protocatechuic acid (PCA) were reported to exert antidepressant activity in rodents after acute treatment. Our previous study also showed that this activity might have been influenced by the monoaminergic system and the upregulation of the brain-derived neurotropic factor (BDNF) level. A very long-term pharmacological therapy is required for the treatment of a patient with depression. The repetitive use of antidepressants is recognized to impact the brain structures responsible for regulating both emotional and cognitive behaviors. Thus, we investigated the antidepressant, anxiolytic, and procognitive effects of HYP and PCA in mice after acute and prolonged treatment (14 days). Both polyphenols induced an anxiogenic-like effect after acute treatment, whereas an anxiolytic effect occurred after repetitive administration. PCA and HYP showed procognitive effects when they were administered acutely and chronically, but it seems that their influence on long-term memory was stronger than on short-term memory. In addition, the preset study showed that the dose of 7.5 mg/kg of PCA and HYP was effective in counteracting the effects of co-administered scopolamine in the long-term memory impairment model induced by scopolamine. Our experiments revealed the compounds have no affinity for 5-HT1A and 5-HT2A receptors, whereas a significant increase in serum serotonin level after prolonged administration of PCA and HYP at a dose of 3.75 mg/kg was observed. Thus, it supports the involvement of the serotonergic system in the polyphenol mechanisms. These findings led us to hypothesize that the polyphenols isolated from Impatiens glandulifera can hold promise in treating mental disorders with cognitive dysfunction. Consequently, extended studies are necessary to delve into their pharmacological profile.

5.
Psychopharmacology (Berl) ; 240(4): 983-1000, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36869919

RESUMEN

Diabetes causes a variety of molecular changes in the brain, making it a real risk factor for the development of cognitive dysfunction. Complex pathogenesis and clinical heterogeneity of cognitive impairment makes the efficacy of current drugs limited. Sodium-glucose cotransporter 2 inhibitors (SGLT2i) gained our attention as drugs with potential beneficial effects on the CNS. In the present study, these drugs ameliorated the cognitive impairment associated with diabetes. Moreover, we verified whether SGLT2i can mediate the degradation of amyloid precursor protein (APP) and modulation of gene expression (Bdnf, Snca, App) involved in the control of neuronal proliferation and memory. The results of our research proved the participation of SGLT2i in the multifactorial process of neuroprotection. SGLT2i attenuate the neurocognitive impairment through the restoration of neurotrophin levels, modulation of neuroinflammatory signaling, and gene expression of Snca, Bdnf, and App in the brain of diabetic mice. The targeting of the above-mentioned genes is currently seen as one of the most promising and developed therapeutic strategies for diseases associated with cognitive dysfunction. The results of this work could form the basis of a future administration of SGLT2i in diabetics with neurocognitive impairment.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Inhibidores del Cotransportador de Sodio-Glucosa 2 , Ratones , Animales , Hipoglucemiantes/uso terapéutico , Inhibidores del Cotransportador de Sodio-Glucosa 2/farmacología , Inhibidores del Cotransportador de Sodio-Glucosa 2/uso terapéutico , Factor Neurotrófico Derivado del Encéfalo , Diabetes Mellitus Experimental/tratamiento farmacológico , Glucosa , Sodio/uso terapéutico
6.
Pharmaceuticals (Basel) ; 15(11)2022 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-36355480

RESUMEN

One of the most important therapies of malignant neoplasms, which are the second cause of death worldwide, is focused on the inhibition of pathological angiogenesis within the tumor. Therefore, the searching for the efficacious and relatively inexpensive small-molecule inhibitors of this process is essential. In this research, the anti-angiogenic potential of N-substituted-4-methylbenzenesulphonyl hydrazone, possessing antiproliferative activity against cancer cells, was tested. For this purpose, an intersegmental vessel (ISV) angiogenesis assay was performed using 6 hpf (hours post fertilization), 12 hpf and 24 hpf embryos of zebrafish transgenic strain, Tg(fli1: EGFP). They were incubated with different concentrations of tested molecule and after 24 h the development of intersegmental vessels of the trunk was analysed. In turn, the acute toxicity study in the zebrafish model was mainly conducted on strain AB, using the OECD-approved and recommended fish embryo acute toxicity test (FET) procedure. The results showed the moderate toxicity of N-[(3-chloro-4-methoxyphenyl)methylidene]-4-methylbenzenesulphonohydrazide in above-mentioned model with the LC50 value calculated at 23.04 mg/L. Moreover, newly synthesized molecule demonstrated the anti-angiogenic potential proved in Tg(fli1: EGFP) zebrafish model, which may be promising for the therapy of neoplastic tumors as well as other diseases related to pathological angiogenesis, such as age-related macular degeneration and diabetic retinopathy.

7.
Int J Mol Sci ; 23(10)2022 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-35628311

RESUMEN

Many relevant studies, as well as clinical practice, confirm that untreated diabetes predisposes the development of neuroinflammation and cognitive impairment. Having regard for the fact that PPARγ are widely distributed in the brain and PPARγ ligands may regulate the inflammatory process, the anti-inflammatory potential of the PPARγ agonist, pioglitazone, was assessed in a mouse model of neuroinflammation related with diabetes. In this regard, the biochemical and molecular indicators of neuroinflammation were determined in the hippocampus and prefrontal cortex of diabetes mice. The levels of cytokines (IL-1ß, IL-6, and TNF) and the expression of genes (Tnfrsf1a and Cav1) were measured. In addition, behavioral tests such as the open field test, the hole-board test, and the novel object recognition test were conducted. A 14-day treatment with pioglitazone significantly decreased IL-6 and TNFα levels in the prefrontal cortex and led to the downregulation of Tnfrsf1a expression and the upregulation of Cav1 expression in both brain regions of diabetic mice. Pioglitazone, by targeting neuroinflammatory signaling, improved memory and exploratory activity in behavioral tests. The present study provided a potential theoretical basis and therapeutic target for the treatment of neuroinflammation associated with diabetes. Pioglitazone may provide a promising therapeutic strategy in diabetes patients with muffled of behavioral activity.


Asunto(s)
Diabetes Mellitus Experimental , Enfermedades Neuroinflamatorias , PPAR gamma , Pioglitazona , Animales , Caveolina 1/metabolismo , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/tratamiento farmacológico , Modelos Animales de Enfermedad , Interleucina-6/metabolismo , Ratones , Enfermedades Neuroinflamatorias/etiología , Enfermedades Neuroinflamatorias/prevención & control , PPAR gamma/agonistas , Pioglitazona/farmacología , Pioglitazona/uso terapéutico , Receptores Tipo I de Factores de Necrosis Tumoral/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
8.
Brain Sci ; 12(4)2022 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-35448030

RESUMEN

Exposure to chronic stress leads to disturbances in glucose metabolism in the brain, and changes in the functioning of neurons coexisting with the development of depression. The detailed molecular mechanism and cerebral gluconeogenesis during depression are not conclusively established. The aim of the research was to assess the expression of selected genes involved in cerebral glucose metabolism of mice in the validated animal paradigm of chronic stress. To confirm the induction of depression-like disorders, we performed three behavioral tests: sucrose preference test (SPT), forced swim test (FST), and tail suspension test (TST). In order to study the cerebral glucose metabolism of the brain, mRNA levels of the following genes were determined in the prefrontal cortex of mice: Slc2a3, Gapdh, Ldha, Ldhb, and Pkfb3. It has been shown that exogenous, chronic administration of corticosterone developed a model of depression in behavioral tests. There were statistically significant changes in the mRNA level of the Slc2a3, Ldha, Gapdh, and Ldhb genes. The obtained results suggest changes in cerebral glucose metabolism as a process of adaptation to stressful conditions, and may provide the basis for introducing new therapeutic strategies for chronic stress-related depression.

9.
Sci Rep ; 12(1): 6708, 2022 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-35468904

RESUMEN

Diabetes is a chronic disease leading to memory difficulties and deterioration of learning abilities. The previous studies showed that modulation of inflammatory pathways in the diabetic brain may reduce dysfunction or cell death in brain areas which are important for control of cognitive function. In the present study, we investigated the neuroprotective actions of newly synthesized adamantane derivatives on diabetes-induced cognitive impairment in mice. Our study relied on the fact that both vildagliptin and saxagliptin belong to DPP4 inhibitors and, contain adamantanyl group. Efficacy of tested compounds at reversing diabetes-induced different types of memory impairment was evaluated with the use of selected behavioural tests. The following neuroinflammatory indicators were also analyzed: neuroinflammatory indicators and the expression of genes involved in the inflammatory response of brain (Cav1, Bdnf). Our study demonstrated that new adamantane derivatives, similarly to DPP4 inhibitors, can restrict diabetes-induced cognitive deficits. We demonstrated that the overexpression of GLP-1-glucagon-like peptide as well as Bdnf, Cav1 genes translate into central blockade of pro-inflammatory synthesis of cytokines and significantly improvement on memory performance in diabetes mice. Newly synthesized adamantane derivatives might have important roles in prevention and treatment of cognitive impairment by inflammatory events in patients with diabetes or related diseases.


Asunto(s)
Adamantano , Disfunción Cognitiva , Diabetes Mellitus , Inhibidores de la Dipeptidil-Peptidasa IV , Adamantano/farmacología , Adamantano/uso terapéutico , Animales , Factor Neurotrófico Derivado del Encéfalo/genética , Disfunción Cognitiva/tratamiento farmacológico , Disfunción Cognitiva/etiología , Inhibidores de la Dipeptidil-Peptidasa IV/farmacología , Inhibidores de la Dipeptidil-Peptidasa IV/uso terapéutico , Dopaminérgicos , Humanos , Inflamación/tratamiento farmacológico , Mediadores de Inflamación , Ratones , Plasticidad Neuronal
10.
Brain Sci ; 11(10)2021 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-34679364

RESUMEN

The hypothalamic-pituitary-adrenal (HPA) axis is involved in the pathophysiology of many neuropsychiatric disorders. Increased HPA axis activity can be observed during chronic stress, which plays a key role in the pathophysiology of depression. Overactivity of the HPA axis occurs in major depressive disorder (MDD), leading to cognitive dysfunction and reduced mood. There is also a correlation between the HPA axis activation and gut microbiota, which has a significant impact on the development of MDD. It is believed that the gut microbiota can influence the HPA axis function through the activity of cytokines, prostaglandins, or bacterial antigens of various microbial species. The activity of the HPA axis in schizophrenia varies and depends mainly on the severity of the disease. This review summarizes the involvement of the HPA axis in the pathogenesis of neuropsychiatric disorders, focusing on major depression and schizophrenia, and highlights a possible correlation between these conditions. Although many effective antidepressants are available, a large proportion of patients do not respond to initial treatment. This review also discusses new therapeutic strategies that affect the HPA axis, such as glucocorticoid receptor (GR) antagonists, vasopressin V1B receptor antagonists and non-psychoactive CB1 receptor agonists in depression and/or schizophrenia.

11.
Int J Mol Sci ; 22(8)2021 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-33918576

RESUMEN

The brain is the most vulnerable organ to glucose fluctuations, as well as inflammation. Considering that cognitive impairment might occur at the early stage of diabetes, it is very important to identify key markers of early neuronal dysfunction. Our overall goal was to identify neuroinflammatory and molecular indicators of early cognitive impairment in diabetic mice. To confirm cognitive impairment in diabetic mice, series of behavioral tests were conducted. The markers related to cognitive decline were classified into the following two groups: Neuroinflammatory markers: IL-1ß, IL-6, tumor necrosis factor-α (TNF-α) and genetic markers (Bdnf, Arc, Egr1) which were estimated in brain regions. Our studies showed a strong association between hyperglycemia, hyperinsulinemia, neuroinflammation, and cognitive dysfunction in T2DM mice model. Cognitive impairment recorded in diabetes mice were associated not only with increased levels of cytokines but also decreased Arc and Egr1 mRNA expression level in brain regions associated with learning process and memory formation. The results of our research show that these indicators may be useful to test new forms of treatment of early cognitive dysfunction associated not only with diabetes but other diseases manifesting this type of disorders. The significant changes in Arc and Egr1 gene expression in early stage diabetes create opportunities it possible to use them to track the progression of CNS dysfunction and also to differential disease diagnosis running with cognitive impairment.


Asunto(s)
Biomarcadores , Disfunción Cognitiva/etiología , Disfunción Cognitiva/metabolismo , Diabetes Mellitus Experimental/complicaciones , Susceptibilidad a Enfermedades , Mediadores de Inflamación/metabolismo , Animales , Glucemia , Disfunción Cognitiva/psicología , Citocinas/metabolismo , Diabetes Mellitus Experimental/metabolismo , Modelos Animales de Enfermedad , Hipocampo/metabolismo , Hipocampo/fisiopatología , Insulina/sangre , Aprendizaje , Masculino , Aprendizaje por Laberinto , Memoria , Ratones , Actividad Motora , Corteza Prefrontal/metabolismo
12.
Behav Brain Res ; 405: 113185, 2021 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-33617903

RESUMEN

Chronic or recurrent stress is associated with reactive oxygen species (ROS) overproduction and can lead to oxidative damage, which plays important roles in neurodegenerative diseases. Mito - TEMPO is an antioxidant targeted at mitochondria. The aim of the presented study was to assess antidepressant and antioxidant efficacy of Mito - TEMPO administered alone or with fluoxetine in mice exposed to chronic stress. The evaluation of the antidepressant-like activity was based on forced swimming test (FST) and tail suspension test (TST). In order to evaluate the antioxidant potential, the level of mRNA expression of Adora1, Ogg1, Msra, Nrf2 and Tfam in the hippocampus of mice was determined. Behavioural research data showed the antidepressant effect of fluoxetine and Mito - TEMPO administered to mice alone and in combination. The molecular research results indicate a significant impact of chronic stress on the oxidation-reduction balance and an antioxidant effect of Mito - TEMPO. The results obtained in the study suggest that Mito - TEMPO protects DNA against oxidative damage and may be beneficial in the way of cellular function improvement under the conditions of chronic stress. Adora1, Msra, Nrf2 and Tfam genes may be involved in mediating the antioxidant effect of the combined treatment with fluoxetine and Mito - TEMPO.


Asunto(s)
Antioxidantes/farmacología , Conducta Animal/efectos de los fármacos , Depresión/tratamiento farmacológico , Fluoxetina/farmacología , Hipocampo/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Inhibidores Selectivos de la Recaptación de Serotonina/farmacología , Estrés Psicológico/metabolismo , Animales , Depresión/metabolismo , Modelos Animales de Enfermedad , Quimioterapia Combinada , Hipocampo/metabolismo , Masculino , Ratones
13.
Oncol Lett ; 20(5): 136, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32934704

RESUMEN

Cancer treatment remains a serious challenge worldwide. Thus, finding novel antitumour agents is of great importance. In the present study, nine new benzenesulphonohydrazide derivatives (1-9) were synthesized, and the chemical structures of the obtained compounds were confirmed by spectral analysis methods, including IR, 1H nuclear magnetic resonance (NMR) and 13C NMR. Experimental lipophilicity values were established using reversed phase-high performance thin layer chromatography. The antiproliferative activity of the synthesized compounds was tested against three tumour cell lines (769-P, HepG2 and NCI-H2170) and one normal cell line (Vero). Among the newly developed molecules, compound 4 exhibited generally the highest cytotoxicity across all tumour cell lines, and it was highly selective. However, higher selectivity towards the tested cancer cell lines was observed using compound 2, when compared with compound 4, which also exhibited significant antiproliferative activity against these tumour cells. In 769-P cells, compounds 5 and 6 were the most selective among all tested compounds. Compound 5 exhibited high cytotoxicity with an estimated IC50 value of 1.94 µM. In the NCI-H2170 cell line, compound 7 was the most cytotoxic and the most selective. In brief, the combination of fluorine and bromine substituents at the phenyl ring showed the most promising results, exerting high cytotoxicity and selectivity towards cancer cells. The renal adenocarcinoma cell line (769-P) appeared to be the most sensitive to the anticancer properties of the novel benzenesulphonohydrazones.

14.
Biomed Pharmacother ; 130: 110526, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32693180

RESUMEN

In this study 14 novel hydrazide-hydrazones of 5-bromo-2-iodobenzoic acid (3-16) were synthesized on the basis of condensation reaction. The chemical structure of obtained derivatives was established on the basis of spectral data (1H NMR and 13C NMR) and the lipophilicity of synthesized molecules was determined with the use of RP-HPTLC chromatography. Synthesized hydrazide-hydrazones (3-16) were subjected to in vitro cytotoxicity assay and antimicrobial activity analysis against a panel of bacteria and fungi. Among newly synthesized derivatives (3-16), compound 5 was characterized by high, selective and the most diverse cytotoxicity to the cancer cell lines. Molecules 7 and 9 which were substituted with a nitro group in the phenyl ring also exhibited very significant inhibitory effect in the tumor cells and they were very selective. Similarly, compound 13 showed high antiproliferative activity against both cancer cell lines (769-P, HepG2) with satisfactory selectivity. In turn, molecule 8 was characterized by lower inhibitory effect in tumor cells but high selectivity. Derivative 16 proved to be toxic mainly to 769-P cells plausibly by the inhibition of COX-2 mediated signalling pathway. In summary, the introduction of chloro substituent or nitro group to the molecule proved to be most advantageous, providing high cytotoxicity and selectivity to tumor cells. However, the presence of indole scaffold appeared to be responsible for COX-2 inhibitory effect. Some of synthesized hydrazide-hydrazones possessed also moderate antimicrobial activity against a panel of microorganisms.


Asunto(s)
Antibacterianos/síntesis química , Antibacterianos/farmacología , Antifúngicos/síntesis química , Antifúngicos/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/farmacología , Hidrazonas/síntesis química , Hidrazonas/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Cromatografía en Capa Delgada , Inhibidores de la Ciclooxigenasa 2/síntesis química , Inhibidores de la Ciclooxigenasa 2/farmacología , Humanos , Lípidos/química , Espectroscopía de Resonancia Magnética , Pruebas de Sensibilidad Microbiana , Transducción de Señal/efectos de los fármacos , Relación Estructura-Actividad
15.
Oncol Rep ; 43(3): 1019-1030, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32020228

RESUMEN

Kidney cancer is one of the most lethal urological malignancies associated with a high risk of mortality. Recent studies have shown that several antidiabetic drugs may limit the risk of the growth of different types of cancer. Pioglitazone (PIO) belongs to a novel class of antidiabetic drugs called thiazolidinediones (TZDs), which are commonly used in the treatment of type 2 diabetes. This drug has been demonstrated to exert an inhibitory effect on cell growth in colon, prostatic, breast and pancreatic cancer lines. The aim of the present study was to assess the inhibitory effect of PIO on the proliferation of the renal adenocarcinoma cell line 769­P. In addition, the proapoptotic potential of combined treatment with PIO and methotrexate (MTX) was evaluated, as well as the impact of the above drugs on the cell cycle of the 769­P cells. The present study showed that PIO efficaciously inhibited the proliferation and viability of renal cancer cells, and it induced sub­G1 cell cycle arrest and a decrease in the number of cells in the G2 phase, which indicated cytotoxic activity. PIO also exhibited proapoptotic properties at the lowest dose applied (10 µM). Furthermore, combined therapy with PIO and MTX increased the sensitivity of tumor cells to MTX while at the same time this combined therapy did not exhibit a cytotoxic effect to normal kidney cells. In renal adenocarcinoma cells, the combination of the above cytostatic agent at the lowest dose administered (MTX, 5 µM) with the peroxisome proliferator­activated receptor Î³ agonist PIO exhibited better efficacy in triggering the process of apoptosis than that displayed by MTX alone.


Asunto(s)
Carcinoma de Células Renales/tratamiento farmacológico , Metotrexato/farmacología , PPAR gamma/genética , Pioglitazona/farmacología , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Reposicionamiento de Medicamentos , Resistencia a Antineoplásicos/efectos de los fármacos , Humanos , Hipoglucemiantes/uso terapéutico , Riñón/efectos de los fármacos , Riñón/patología , Tiazolidinedionas/uso terapéutico
16.
Toxicol Appl Pharmacol ; 380: 114689, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31344373

RESUMEN

Chronic exposure to environmental-like stress leads to dysregulation of hypothalamic-pituitary-adrenal (HPA) axis and to appearance of oxidative stress, which is implicated in the development of depression-like behaviour. Edaravone (3-methyl-1-phenyl-2-pyrazoline-5-one) exhibits a neuroprotective effect attributed to the potent free radical scavenging. This study was designed to assess antidepressant-like activity of edaravone based on behavioural tests in the animal model of depression. Furthermore, to elucidate its mechanisms, the expression of Fkbp5, Comt, Adora and Slc6a15 genes involved in turnover of neurotransmitters was analysed. In order to evaluate the antioxidant features of edaravone, DNA's oxidative damage was determined. The mice were injected subcutaneously (sc) with 40 mg/kg corticosterone, chronically for 21 days. Paroxetine (10 mg/kg) (a selective serotonin reuptake inhibitor) and edaravone (10 mg/kg) were administered separately (ip) 30 min prior to the corticosterone injection. After 21-days of treatment with respective drugs, the mice were decapitated and the prefrontal cortex was rapidly dissected and used for determination of DNA's oxidative damage and the real-time PCR analysis. Edaravone ameliorated behavioural impairments in sucrose preference test (SPT) and forced swim test (FST). A possible role in Fkbp5, Comt, Adora1 and Slc6a15 genes' expression in mediating this effect is postulated. Both edaravone and paroxetine have no effect on corticosterone-induced DNA's oxidative damage.


Asunto(s)
Antidepresivos/uso terapéutico , Depresión/tratamiento farmacológico , Edaravona/uso terapéutico , Fármacos Neuroprotectores/uso terapéutico , Sistemas de Transporte de Aminoácidos Neutros/genética , Animales , Antidepresivos/farmacología , Conducta Animal/efectos de los fármacos , Catecol O-Metiltransferasa/genética , Corticosterona , Daño del ADN , Depresión/inducido químicamente , Depresión/genética , Modelos Animales de Enfermedad , Edaravona/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Masculino , Ratones , Fármacos Neuroprotectores/farmacología , Receptor de Adenosina A1/genética , Proteínas de Unión a Tacrolimus/genética
17.
Neurochem Int ; 128: 206-214, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31077758

RESUMEN

We have recently demonstrated that the hydroethanolic extracts of Impatiens glandulifera Royle (Balsaminaceae) have antianxiety effect in mice. The present study was aimed to investigate an antidepressant activity of hyperoside (HYP) and protocatechuic acid (PCA), two polyphenols isolated from the aerial parts of this plant, using the forced swimming test (FST) and tail suspension test (TST) in mice. The implication of the monoaminergic system in this effect was assessed and brain-derived neurotrophic factor (BDNF) expression was measured. At doses 1.875, 3.75 and 7.5 mg/kg, HYP and PCA significantly reduced immobility in the FST and TST, without affecting locomotor activity of mice. Pretreatment with p-chlorophenylalanine (PCPA 100 mg/kg, a serotonin synthesis inhibitor) or α-methyl-DL-tyrosine (AMPT 100 mg/kg, a catecholamine synthesis inhibitor) was able to prevent antidepressant-like effect of HYP and PCA (3.75 mg/kg). Sub-effective doses of fluoxetine (5 mg/kg) or reboxetine (2 mg/kg) were capable of potentiating the effect of a sub-effective dose of HYP (0.94 mg/kg) in the FST. Co-administration of sub-effective dose of PCA (0.94 mg/kg) and reboxetine (2 mg/kg) resulted in reducing immobility in the FST. The antidepressant-like effect of HYP and PCA was also prevented by the administration of sulpiride (50 mg/kg), a D2 antagonist. In addition, HYP (3.75 and 7.5 mg/kg) and PCA (7.5 mg/kg) improved the expression of hippocampal BDNF of mice subjected to TST. Altogether, our findings suggest that HYP and PCA exert antidepressant-like effects in mice, which was possibly mediated by monoaminergic system and the upregulation of BDNF level.


Asunto(s)
Antidepresivos/uso terapéutico , Factor Neurotrófico Derivado del Encéfalo/biosíntesis , Depresión/metabolismo , Hidroxibenzoatos/uso terapéutico , Impatiens , Quercetina/análogos & derivados , Animales , Antidepresivos/aislamiento & purificación , Antidepresivos/farmacología , Aminas Biogénicas/biosíntesis , Depresión/tratamiento farmacológico , Depresión/psicología , Relación Dosis-Respuesta a Droga , Hidroxibenzoatos/aislamiento & purificación , Hidroxibenzoatos/farmacología , Masculino , Ratones , Componentes Aéreos de las Plantas , Extractos Vegetales/aislamiento & purificación , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Quercetina/aislamiento & purificación , Quercetina/farmacología , Quercetina/uso terapéutico , Natación/psicología
18.
Mol Med Rep ; 19(3): 2386-2396, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30664210

RESUMEN

Brain metabolism is closely associated with neuronal activity and enables the accurate synthesis and function of neurotransmitters. Although previous studies have demonstrated that chronic stress is associated with the overproduction of reactive oxygen species (ROS), which leads to oxidative stress and the disruption of glucose metabolism, the molecular mechanisms and cerebral gluconeogenesis in depression have not yet been completely elucidated. In order to examine this subject, the present study evaluated changes in the expression of selected genes involved in the glycolytic pathway and the levels of glucogenic and neuroactive amino acids in the brain of rats exposed to chronic variable stress. Male Wistar rats (50­55 days old, weighing 200­250 g) were divided into two groups: control and stressed, and the rats in the stressed group were exposed to stress conditions for 40 days. Depressive­like states were observed and recorded by measuring the body weight and forced swim test (FST). The mRNA levels of Slc2a3 (coding GLUT3) and Tfam (activator of mitochondrial transcription and a participant in mitochondrial genome replication) were markedly increased, while a decrease in the expression of Ldhb and GAPDH was also observed. These modifications were associated with the redirection of glucose metabolism to appropriate defensive pathways under chronic stress conditions, and an increased ability to maintain mitochondrial function as potential adaptive responses. A marked reduction of glucogenic and neuroactive amino acids levels indicate the support of energy metabolism by stimulation of the gluconeogenesis pathway. The findings of the present study provide a novel insight into the molecular and biochemical events that impact the development of depression under chronic stress conditions, and they may identify novel targets for therapeutic intervention.


Asunto(s)
Encéfalo/metabolismo , Depresión/genética , Metabolismo Energético/genética , Estrés Psicológico/genética , Aminoácidos/genética , Animales , Peso Corporal/genética , Encéfalo/patología , Depresión/fisiopatología , Regulación de la Expresión Génica/genética , Glucosa/metabolismo , Transportador de Glucosa de Tipo 3/genética , Humanos , Isoenzimas/genética , L-Lactato Deshidrogenasa/genética , Mitocondrias , Neuronas/metabolismo , Neuronas/patología , Neurotransmisores/biosíntesis , Neurotransmisores/metabolismo , Estrés Oxidativo/genética , Ratas , Ratas Wistar , Especies Reactivas de Oxígeno/metabolismo , Estrés Psicológico/metabolismo , Estrés Psicológico/patología , Factores de Transcripción/genética
19.
Oncol Rep ; 41(1): 693-701, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30365115

RESUMEN

Cancer represents one of the main causes of mortality in developed countries. In particular, the overall survival of patients with renal cell carcinoma (RCC) remains poor and the available cytostatic agents are insufficient. Therefore, there is an urgent requirement to identify more effective and safer anticancer drugs. Recently, the evaluation of antitumor activity appeared to be promising for thiazolidinone derivatives. The present study presents the synthesis and the cytotoxicity assays of 1,3­thiazolidin­4­ones. The newly synthesized substances were screened in vitro against selected cancer human renal cell adenocarcinoma cells (769­P), human hepatoblastoma­derived cells (HepG2) and normal green monkey kidney cells (GMK) as a reference cell line. N­[2­(4­methylphenyl)­4­oxo­1,3­thiazolidin­3­yl]acetamide and N­[2­(4­methylphenyl)­4­oxo­1,3­thiazolidin­3­yl]benzamide displayed significant antiproliferative activity towards 769­P. To elucidate the mechanisms of the cytotoxic actions, additional studies on the cell cycle and apoptosis were performed. The aforementioned compounds were responsible for G1 cell cycle arrest and the decrease in cell distribution in the G2 phase in a dose­dependent manner, which prevents mitotic divisions of the 769­P cells. In addition, these novel 2,3­disubstituted 1,3­thiazolidin­4­ones slightly induced apoptosis in 769­P in a dose­dependent manner. It was hypothesized that the 4­methylphenyl group at position 2 of the thiazolidin­4­one scaffold may be regarded as a promising moiety for further development of this group of compounds. Therefore, benzamide moiety appeared to be crucial for triggering cells to apoptotic cell death.


Asunto(s)
Adenocarcinoma/tratamiento farmacológico , Antineoplásicos/farmacología , Carcinoma de Células Renales/tratamiento farmacológico , Neoplasias Renales/tratamiento farmacológico , Animales , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Chlorocebus aethiops , Ensayos de Selección de Medicamentos Antitumorales/métodos , Puntos de Control de la Fase G1 del Ciclo Celular/efectos de los fármacos , Fase G2/efectos de los fármacos , Células Hep G2 , Humanos , Relación Estructura-Actividad
20.
J Pharm Pharm Sci ; 21(1): 504-515, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30522586

RESUMEN

PURPOSE: The aim of this study was to evaluate the effect of resveratrol on de novo lipogenesis in HepG2 cells caused by high glucose concentrations. Increased lipogenesis in the liver is the main reason for the development of nonalcoholic fatty liver disease (NAFLD) - currently one of the most common chronic liver diseases. In developed countries, this disease is mostly associated with nutritional disorders, resulting from the increasing consumption of monosaccharides. Resveratrol is a natural polyphenol with a promising potential for NAFLD treatment. METHODS: The steatosis of HepG2 cells was visualized using the intracellular lipid staining by Nile Red dye with a fluorescence microscope. This study also evaluated the effect of resveratrol on the mitochondrial activity (MitoTracker Green staining), dsDNA (Hoechst 33342 staining) and the viability of HepG2 cells treated with high glucose concentrations (25 and 33 mM). RESULTS: Current study showed that high glucose concentrations induced fat-overloading in HepG2 cells (microvacuolar steatosis occurred in most of the cells). Resveratrol (20 µM) limits the steatosis induction in HepG2 cells by glucose and increased the mitochondrial activity of cells. Resveratrol did not affect the viability of HepG2 cells. CONCLUSION: This beneficial effect could be helpful in the treatment of NAFLD.


Asunto(s)
Lipogénesis/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Resveratrol/farmacología , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Glucosa/farmacología , Células Hep G2 , Humanos , Mitocondrias/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...