Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Plant Sci ; 13: 870078, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35599858

RESUMEN

Iron is an essential micronutrient for humans and other organisms. Its deficiency is one of the leading causes of anemia worldwide. The world health organization has proposed that an alternative to increasing iron content in food is through crop biofortification. One of the most consumed part of crops is the seed, however, little is known about how iron accumulation in seed occurs and how it is regulated. B3 transcription factors play a critical role in the accumulation of storage compounds such as proteins and lipids. Their role in seed maturation has been well characterized. However, their relevance in accumulation and distribution of micronutrients like iron remains unknown. In Arabidopsis thaliana and other plant models, three master regulators belonging to the B3 transcription factors family have been identified: FUSCA3 (FUS3), LEAFY COTYLEDON2 (LEC2), and ABSCISIC ACID INSENSITIVE 3 (ABI3). In this work, we studied how seed iron homeostasis is affected in B3 transcription factors mutants using histological and molecular approaches. We determined that iron distribution is modified in abi3, lec2, and fus3 embryo mutants. For abi3-6 and fus3-3 mutant embryos, iron was less accumulated in vacuoles of cells surrounding provasculature compared with wild type embryos. lec2-1 embryos showed no difference in the pattern of iron distribution in hypocotyl, but a dramatic decrease of iron was observed in cotyledons. Interestingly, for the three mutant genotypes, total iron content in dry mutant seeds showed no difference compared to wild type. At the molecular level, we showed that genes encoding the iron storage ferritins proteins are misregulated in mutant seeds. Altogether our results support a role of the B3 transcription factors ABI3, LEC2, and FUS3 in maintaining iron homeostasis in Arabidopsis embryos.

2.
Plant Cell ; 34(5): 2019-2037, 2022 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-35157082

RESUMEN

Stomata optimize land plants' photosynthetic requirements and limit water vapor loss. So far, all of the molecular and electrical components identified as regulating stomatal aperture are produced, and operate, directly within the guard cells. However, a completely autonomous function of guard cells is inconsistent with anatomical and biophysical observations hinting at mechanical contributions of epidermal origins. Here, potassium (K+) assays, membrane potential measurements, microindentation, and plasmolysis experiments provide evidence that disruption of the Arabidopsis thaliana K+ channel subunit gene AtKC1 reduces pavement cell turgor, due to decreased K+ accumulation, without affecting guard cell turgor. This results in an impaired back pressure of pavement cells onto guard cells, leading to larger stomatal apertures. Poorly rectifying membrane conductances to K+ were consistently observed in pavement cells. This plasmalemma property is likely to play an essential role in K+ shuttling within the epidermis. Functional complementation reveals that restoration of the wild-type stomatal functioning requires the expression of the transgenic AtKC1 at least in the pavement cells and trichomes. Altogether, the data suggest that AtKC1 activity contributes to the building of the back pressure that pavement cells exert onto guard cells by tuning K+ distribution throughout the leaf epidermis.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fotosíntesis , Hojas de la Planta/metabolismo , Estomas de Plantas/metabolismo
4.
Sci Rep ; 11(1): 17322, 2021 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-34453100

RESUMEN

We performed a histological and quantitative study of iron in archaeological maize seeds from prehispanic times recovered from Tarapacá, Atacama Desert. Also, we examined iron distribution changes at the cell level in embryos from ancient versus new varieties of maize. Our results show a progressive decrease in iron concentration from the oldest maize to modern specimens. We interpret the results as an effect of prehispanic agriculture over the micronutrient composition of maize.

5.
J Exp Bot ; 72(10): 3881-3901, 2021 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-33758916

RESUMEN

Plants need to cope with strong variations of nitrogen availability in the soil. Although many molecular players are being discovered concerning how plants perceive NO3- provision, it is less clear how plants recognize a lack of nitrogen. Following nitrogen removal, plants activate their nitrogen starvation response (NSR), which is characterized by the activation of very high-affinity nitrate transport systems (NRT2.4 and NRT2.5) and other sentinel genes involved in N remobilization such as GDH3. Using a combination of functional genomics via transcription factor perturbation and molecular physiology studies, we show that the transcription factors belonging to the HHO subfamily are important regulators of NSR through two potential mechanisms. First, HHOs directly repress the high-affinity nitrate transporters, NRT2.4 and NRT2.5. hho mutants display increased high-affinity nitrate transport activity, opening up promising perspectives for biotechnological applications. Second, we show that reactive oxygen species (ROS) are important to control NSR in wild-type plants and that HRS1 and HHO1 overexpressors and mutants are affected in their ROS content, defining a potential feed-forward branch of the signaling pathway. Taken together, our results define the relationships of two types of molecular players controlling the NSR, namely ROS and the HHO transcription factors. This work (i) up opens perspectives on a poorly understood nutrient-related signaling pathway and (ii) defines targets for molecular breeding of plants with enhanced NO3- uptake.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Transporte de Anión/genética , Proteínas de Transporte de Anión/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Nitratos/metabolismo , Nitrógeno/metabolismo , Raíces de Plantas/metabolismo , Especies Reactivas de Oxígeno , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
6.
New Phytol ; 229(4): 2062-2079, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33205512

RESUMEN

Iron (Fe) is a major micronutrient and is required for plant growth and development. Nongrass species have evolved a reduction-based strategy to solubilize and take up Fe. The secretion of Fe-mobilizing coumarins (e.g. fraxetin, esculetin and sideretin) by plant roots plays an important role in this process. Although the biochemical mechanisms leading to their biosynthesis have been well described, very little is known about their cellular and subcellular localization or their mobility within plant tissues. Spectral imaging was used to monitor, in Arabidopsis thaliana, the in planta localization of Fe-mobilizing coumarins and scopolin. Molecular, genetic and biochemical approaches were also used to investigate the dynamics of coumarin accumulation in roots. These approaches showed that root hairs play a major role in scopoletin secretion, whereas fraxetin and esculetin secretion occurs through all epidermis cells. The findings of this study also showed that the transport of coumarins from the cortex to the rhizosphere relies on the PDR9 transporter under Fe-deficient conditions. Additional experiments support the idea that coumarins move throughout the plant body via the xylem sap and that several plant species can take up coumarins present in the surrounding media. Altogether, the data presented here demonstrate that coumarin storage and accumulation in roots is a highly complex and dynamic process.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Cumarinas , Raíces de Plantas
7.
Int J Mol Sci ; 21(21)2020 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-33143294

RESUMEN

Iron-sulfur (Fe-S) proteins play critical functions in plants. Most Fe-S proteins are synthetized in the cytosol as apo-proteins and the subsequent Fe-S cluster incorporation relies on specific protein assembly machineries. They are notably formed by a scaffold complex, which serves for the de novo Fe-S cluster synthesis, and by transfer proteins that insure cluster delivery to apo-targets. However, scarce information is available about the maturation pathways of most plastidial Fe-S proteins and their specificities towards transfer proteins of the associated SUF machinery. To gain more insights into these steps, the expression and protein localization of the NFU1, NFU2, and NFU3 transfer proteins were analyzed in various Arabidopsis thaliana organs and tissues showing quite similar expression patterns. In addition, quantitative proteomic analysis of an nfu3 loss-of-function mutant allowed to propose novel potential client proteins for NFU3 and to show that the protein accumulation profiles and thus metabolic adjustments differ substantially from those established in the nfu2 mutant. By clarifying the respective roles of the three plastidial NFU paralogs, these data allow better delineating the maturation process of plastidial Fe-S proteins.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Cloroplastos/metabolismo , Proteínas Hierro-Azufre/metabolismo , Plastidios/metabolismo , Proteoma/metabolismo , Arabidopsis/crecimiento & desarrollo , Proteoma/análisis
8.
PLoS One ; 15(8): e0237998, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32817691

RESUMEN

Among the mineral nutrients that are required for plant metabolism, iron (Fe) and sulphur (S) play a central role as both elements are needed for the activity of several proteins involved in essential cellular processes. A combination of physiological, biochemical and molecular approaches was employed to investigate how S availability influences plant response to Fe deficiency, using the model plant Arabidopsis thaliana. We first observed that chlorosis symptom induced by Fe deficiency was less pronounced when S availability was scarce. We thus found that S deficiency inhibited the Fe deficiency induced expression of several genes associated with the maintenance of Fe homeostasis. This includes structural genes involved in Fe uptake (i.e. IRT1, FRO2, PDR9, NRAMP1) and transport (i.e. FRD3, NAS4) as well as a subset of their upstream regulators, namely BTS, PYE and the four clade Ib bHLH. Last, we found that the over accumulation of manganese (Mn) in response to Fe shortage was reduced under combined Fe and S deficiencies. These data suggest that S deficiency inhibits the Fe deficiency dependent induction of the Fe uptake machinery. This in turn limits the transport into the root and the plant body of potentially toxic divalent cations such as Mn and Zn, thus limiting the deleterious effect of Fe deprivation.


Asunto(s)
Arabidopsis/metabolismo , Deficiencias de Hierro , Azufre/metabolismo , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Homeostasis , Hierro/metabolismo , Transcripción Genética
9.
Front Plant Sci ; 11: 725, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32547590

RESUMEN

Several transcription factors have been involved in the regulation of gene expression during seed development. Nutritional reserves, including iron, are principally accumulated during seed maturation stages. Using the model plant Arabidopsis thaliana, it has been shown that iron is stored during seed development in vacuoles of the endodermis cell layer. During seed germination, these iron reserves are remobilized and used by the seedling during the heterotrophic to autotrophic metabolism switch. To date, no information about how iron distribution is genetically regulated has been reported.

10.
J Exp Bot ; 71(14): 4171-4187, 2020 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-32240305

RESUMEN

Iron-sulfur (Fe-S) proteins have critical functions in plastids, notably participating in photosynthetic electron transfer, sulfur and nitrogen assimilation, chlorophyll metabolism, and vitamin or amino acid biosynthesis. Their maturation relies on the so-called SUF (sulfur mobilization) assembly machinery. Fe-S clusters are synthesized de novo on a scaffold protein complex and then delivered to client proteins via several transfer proteins. However, the maturation pathways of most client proteins and their specificities for transfer proteins are mostly unknown. In order to decipher the proteins interacting with the Fe-S cluster transfer protein NFU2, one of the three plastidial representatives found in Arabidopsis thaliana, we performed a quantitative proteomic analysis of shoots, roots, and seedlings of nfu2 plants, combined with NFU2 co-immunoprecipitation and binary yeast two-hybrid experiments. We identified 14 new targets, among which nine were validated in planta using a binary bimolecular fluorescence complementation assay. These analyses also revealed a possible role for NFU2 in the plant response to desiccation. Altogether, this study better delineates the maturation pathways of many chloroplast Fe-S proteins, considerably extending the number of NFU2 clients. It also helps to clarify the respective roles of the three NFU paralogs NFU1, NFU2, and NFU3.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas Hierro-Azufre , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cloroplastos/metabolismo , Proteínas Hierro-Azufre/genética , Proteómica
11.
Plant Cell ; 32(2): 508-524, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31776233

RESUMEN

Iron (Fe) is an essential micronutrient for plant growth and development. Any defects in the maintenance of Fe homeostasis will alter plant productivity and the quality of their derived products. In Arabidopsis (Arabidopsis thaliana), the transcription factor ILR3 plays a central role in controlling Fe homeostasis. In this study, we identified bHLH121 as an ILR3-interacting transcription factor. Interaction studies showed that bHLH121 also interacts with the three closest homologs of ILR3 (i.e., basic-helix-loop-helix 34 [bHLH34], bHLH104, and bHLH115). bhlh121 loss-of-function mutants displayed severe defects in Fe homeostasis that could be reverted by exogenous Fe supply. bHLH121 acts as a direct transcriptional activator of key genes involved in the Fe regulatory network, including bHLH38, bHLH39, bHLH100, bHLH101, POPEYE, BRUTUS, and BRUTUS LIKE1, as well as IRONMAN1 and IRONMAN2 In addition, bHLH121 is necessary for activating the expression of transcription factor gene FIT in response to Fe deficiency via an indirect mechanism. bHLH121 is expressed throughout the plant body, and its expression is not affected by Fe availability. By contrast, Fe availability affects the cellular localization of bHLH121 protein in roots. Altogether, these data show that bHLH121 is a regulator of Fe homeostasis that acts upstream of FIT in concert with ILR3 and its closest homologs.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Homeostasis/fisiología , Hierro/metabolismo , Factores de Transcripción/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Regulación de la Expresión Génica de las Plantas , Técnicas de Inactivación de Genes , Redes Reguladoras de Genes , Homeostasis/genética , Hidroponía , Proteínas Nucleares , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente , Factores de Transcripción/genética , Transcriptoma , Ubiquitina-Proteína Ligasas
12.
J Exp Bot ; 70(6): 1875-1889, 2019 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-30785184

RESUMEN

Numerous proteins require a metallic co-factor for their function. In plastids, the maturation of iron-sulfur (Fe-S) proteins necessitates a complex assembly machinery. In this study, we focused on Arabidopsis thaliana NFU1, NFU2, and NFU3, which participate in the final steps of the maturation process. According to the strong photosynthetic defects observed in high chlorophyll fluorescence 101 (hcf101), nfu2, and nfu3 plants, we determined that NFU2 and NFU3, but not NFU1, act immediately upstream of HCF101 for the maturation of [Fe4S4]-containing photosystem I subunits. An additional function of NFU2 in the maturation of the [Fe2S2] cluster of a dihydroxyacid dehydratase was obvious from the accumulation of precursors of the branched-chain amino acid synthesis pathway in roots of nfu2 plants and from the rescue of the primary root growth defect by supplying branched-chain amino acids. The absence of NFU3 in roots precluded any compensation. Overall, unlike their eukaryotic and prokaryotic counterparts, which are specific to [Fe4S4] proteins, NFU2 and NFU3 contribute to the maturation of both [Fe2S2] and [Fe4S4] proteins, either as a relay in conjunction with other proteins such as HCF101 or by directly delivering Fe-S clusters to client proteins. Considering the low number of Fe-S cluster transfer proteins relative to final acceptors, additional targets probably await identification.


Asunto(s)
Aminoácidos de Cadena Ramificada/metabolismo , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteínas de Cloroplastos/genética , Proteínas Hierro-Azufre/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Cloroplastos/metabolismo , Proteínas Hierro-Azufre/metabolismo , Raíces de Plantas/metabolismo
13.
Front Plant Sci ; 10: 6, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30713541

RESUMEN

Iron is one of the most important micronutrients in plants as it is involved in many cellular functions (e.g., photosynthesis and respiration). Any defect in iron availability will affect plant growth and development as well as crop yield and plant product quality. Thus, iron homeostasis must be tightly controlled in order to ensure optimal absorption of this mineral element. Understanding mechanisms governing iron homeostasis in plants has been the focus of several studies during the past 10 years. These studies have greatly improved our understanding of the mechanisms involved, revealing a sophisticated iron-dependent transcriptional regulatory network. Strikingly, these studies have also highlighted that this regulatory web relies on the activity of numerous transcriptional regulators that belong to the same group of transcription factors (TF), the bHLH (basic helix-loop-helix) family. This is best exemplified in Arabidopsis where, to date, 16 bHLH TF have been characterized as involved in this process and acting in a complex regulatory cascade. Interestingly, among these bHLH TF some form specific clades, indicating that peculiar function dedicated to the maintenance of iron homeostasis, have emerged during the course of the evolution of the green lineage. Within this mini review, we present new insights on the control of iron homeostasis and the involvement of bHLH TF in this metabolic process.

14.
New Phytol ; 223(3): 1433-1446, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30773647

RESUMEN

Iron (Fe) homeostasis is crucial for all living organisms. In mammals, an integrated posttranscriptional mechanism couples the regulation of both Fe deficiency and Fe excess responses. Whether in plants an integrated control mechanism involving common players regulates responses both to deficiency and to excess is still to be determined. In this study, molecular, genetic and biochemical approaches were used to investigate transcriptional responses to both Fe deficiency and excess. A transcriptional activator of responses to Fe shortage in Arabidopsis, called bHLH105/ILR3, was found to also negatively regulate the expression of ferritin genes, which are markers of the plant's response to Fe excess. Further investigations revealed that ILR3 repressed the expression of several structural genes that function in the control of Fe homeostasis. ILR3 interacts directly with the promoter of its target genes, and repressive activity was conferred by its dimerisation with bHLH47/PYE. Last, this study highlighted that important facets of plant growth in response to Fe deficiency or excess rely on ILR3 activity. Altogether, the data presented herein support that ILR3 is at the centre of the transcriptional regulatory network that controls Fe homeostasis in Arabidopsis, in which it acts as both transcriptional activator and repressor.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Hierro/farmacología , Transcripción Genética , Arabidopsis/efectos de los fármacos , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Elementos E-Box/genética , Ferritinas/genética , Ferritinas/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes de Plantas , Homeostasis , Modelos Biológicos , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo , Regiones Promotoras Genéticas/genética , Unión Proteica/efectos de los fármacos , Plantones/efectos de los fármacos , Plantones/crecimiento & desarrollo , Transcripción Genética/efectos de los fármacos
15.
J Biol Inorg Chem ; 23(4): 567, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29845354

RESUMEN

With the author(s)' decision to opt for Open Choice the copyright of the article changed.

16.
J Biol Inorg Chem ; 23(4): 545-566, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29349662

RESUMEN

One reason why iron is an essential element for most organisms is its presence in prosthetic groups such as hemes or iron-sulfur (Fe-S) clusters, which are notably required for electron transfer reactions. As an organelle with an intense metabolism in plants, chloroplast relies on many Fe-S proteins. This includes those present in the electron transfer chain which will be, in fact, essential for most other metabolic processes occurring in chloroplasts, e.g., carbon fixation, nitrogen and sulfur assimilation, pigment, amino acid, and vitamin biosynthetic pathways to cite only a few examples. The maturation of these Fe-S proteins requires a complex and specific machinery named SUF (sulfur mobilisation). The assembly process can be split in two major steps, (1) the de novo assembly on scaffold proteins which requires ATP, iron and sulfur atoms, electrons, and thus the concerted action of several proteins forming early acting assembly complexes, and (2) the transfer of the preformed Fe-S cluster to client proteins using a set of late-acting maturation factors. Similar machineries, having in common these basic principles, are present in the cytosol and in mitochondria. This review focuses on the currently known molecular details concerning the assembly and roles of Fe-S proteins in plastids.


Asunto(s)
Proteínas Hierro-Azufre/metabolismo , Plastidios/metabolismo , Hierro/metabolismo , Azufre/metabolismo
17.
Front Plant Sci ; 7: 1711, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27933069

RESUMEN

Root secretion of coumarin-phenolic type compounds has been recently shown to be related to Arabidopsis thaliana tolerance to Fe deficiency at high pH. Previous studies revealed the identity of a few simple coumarins occurring in roots and exudates of Fe-deficient A. thaliana plants, and left open the possible existence of other unknown phenolics. We used HPLC-UV/VIS/ESI-MS(TOF), HPLC/ESI-MS(ion trap) and HPLC/ESI-MS(Q-TOF) to characterize (identify and quantify) phenolic-type compounds accumulated in roots or secreted into the nutrient solution of A. thaliana plants in response to Fe deficiency. Plants grown with or without Fe and using nutrient solutions buffered at pH 5.5 or 7.5 enabled to identify an array of phenolics. These include several coumarinolignans not previously reported in A. thaliana (cleomiscosins A, B, C, and D and the 5'-hydroxycleomiscosins A and/or B), as well as some coumarin precursors (ferulic acid and coniferyl and sinapyl aldehydes), and previously reported cathecol (fraxetin) and non-cathecol coumarins (scopoletin, isofraxidin and fraxinol), some of them in hexoside forms not previously characterized. The production and secretion of phenolics were more intense when the plant accessibility to Fe was diminished and the plant Fe status deteriorated, as it occurs when plants are grown in the absence of Fe at pH 7.5. Aglycones and hexosides of the four coumarins were abundant in roots, whereas only the aglycone forms could be quantified in the nutrient solution. A comprehensive quantification of coumarins, first carried out in this study, revealed that the catechol coumarin fraxetin was predominant in exudates (but not in roots) of Fe-deficient A. thaliana plants grown at pH 7.5. Also, fraxetin was able to mobilize efficiently Fe from a Fe(III)-oxide at pH 5.5 and pH 7.5. On the other hand, non-catechol coumarins were much less efficient in mobilizing Fe and were present in much lower concentrations, making unlikely that they could play a role in Fe mobilization. The structural features of the array of coumarin type-compounds produced suggest some can mobilize Fe from the soil and others can be more efficient as allelochemicals.

18.
Methods Mol Biol ; 1482: 103-10, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27557763

RESUMEN

Localization and quantification of expression levels of genes help to determine their function. Localization of gene expression is often achieved through the study of their promoter activity. Three main reporter genes ß-glucuronidase (GUS), green fluorescent protein (GFP), and luciferase (LUC) have been intensively used to characterize promoter activities, each having its own specificities and advantages. Among them, the LUC reporter gene is best suitable for the analysis of the promoter activity of genes in intact living plants. Here, we describe a LUC-based method that allows to precisely localize and quantify promoter activity at the whole plant level, and to study the mechanisms that are involved in long-distance regulation of gene expression in Arabidopsis thaliana. Imaging LUC signals with a low-light CCD camera allows monitoring promoter activity in time and space in the transgenic plant harboring the promoter fused with the LUC gene. In addition, it allows quantifying change of promoter activities in plant during several hours.


Asunto(s)
Regulación de la Expresión Génica de las Plantas/genética , Biología Molecular/métodos , Regiones Promotoras Genéticas , Arabidopsis/genética , Glucuronidasa/genética , Proteínas Fluorescentes Verdes/genética , Luciferasas/genética , Plantas Modificadas Genéticamente/genética
20.
Front Plant Sci ; 6: 290, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25972885

RESUMEN

Phosphate and sulfate are essential macro-elements for plant growth and development, and deficiencies in these mineral elements alter many metabolic functions. Nutritional constraints are not restricted to macro-elements. Essential metals such as zinc and iron have their homeostasis strictly genetically controlled, and deficiency or excess of these micro-elements can generate major physiological disorders, also impacting plant growth and development. Phosphate and sulfate on one hand, and zinc and iron on the other hand, are known to interact. These interactions have been partly described at the molecular and physiological levels, and are reviewed here. Furthermore the two macro-elements phosphate and sulfate not only interact between themselves but also influence zinc and iron nutrition. These intricated nutritional cross-talks are presented. The responses of plants to phosphorus, sulfur, zinc, or iron deficiencies have been widely studied considering each element separately, and some molecular actors of these regulations have been characterized in detail. Although some scarce reports have started to examine the interaction of these mineral elements two by two, a more complex analysis of the interactions and cross-talks between the signaling pathways integrating the homeostasis of these various elements is still lacking. However, a MYB-like transcription factor, PHOSPHATE STARVATION RESPONSE 1, emerges as a common regulator of phosphate, sulfate, zinc, and iron homeostasis, and its role as a potential general integrator for the control of mineral nutrition is discussed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...