Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Am Soc Mass Spectrom ; 27(7): 1203-10, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27080004

RESUMEN

Low molecular weight polar organics are commonly observed in spacecraft environments. Increasing concentrations of one or more of these contaminants can negatively impact Environmental Control and Life Support (ECLS) systems and/or the health of crew members, posing potential risks to the success of manned space missions. Ambient plasma ionization mass spectrometry (MS) is finding effective use as part of the analytical methodologies being tested for next-generation space module environmental analysis. However, ambient ionization methods employing atmospheric plasmas typically require relatively high operation voltages and power, thus limiting their applicability in combination with fieldable mass spectrometers. In this work, we investigate the use of a low power microplasma device in the microhollow cathode discharge (MHCD) configuration for the analysis of polar organics encountered in space missions. A metal-insulator-metal (MIM) structure with molybdenum foil disc electrodes and a mica insulator was used to form a 300 µm diameter plasma discharge cavity. We demonstrate the application of these MIM microplasmas as part of a versatile miniature ion source for the analysis of typical volatile contaminants found in the International Space Station (ISS) environment, highlighting their advantages as low cost and simple analytical devices. Graphical Abstract ᅟ.

2.
Anal Chem ; 87(12): 5981-8, 2015 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-25971650

RESUMEN

In the history of manned spaceflight, environmental monitoring has relied heavily on archival sampling. However, with the construction of the International Space Station (ISS) and the subsequent extension in mission duration up to one year, an enhanced, real-time method for environmental monitoring is necessary. The station air is currently monitored for trace volatile organic compounds (VOCs) using gas chromatography-differential mobility spectrometry (GC-DMS) via the Air Quality Monitor (AQM), while water is analyzed to measure total organic carbon and biocide concentrations using the Total Organic Carbon Analyzer (TOCA) and the Colorimetric Water Quality Monitoring Kit (CWQMK), respectively. As mission scenarios extend beyond low Earth orbit, a convergence in analytical instrumentation to analyze both air and water samples is highly desirable. Since the AQM currently provides quantitative, compound-specific information for air samples and many of the targets in air are also common to water, this platform is a logical starting point for developing a multimatrix monitor. Here, we report on the interfacing of an electrothermal vaporization (ETV) sample introduction unit with a ground-based AQM for monitoring target analytes in water. The results show that each of the compounds tested from water have similar GC-DMS parameters as the compounds tested in air. Moreover, the ETV enabled AQM detection of dimethlsilanediol (DMSD), a compound whose analysis had proven challenging using other sample introduction methods. Analysis of authentic ISS water samples using the ETV-AQM showed that DMSD could be successfully quantified, while the concentrations obtained for the other compounds also agreed well with laboratory results.


Asunto(s)
Vuelo Espacial , Temperatura , Compuestos Orgánicos Volátiles/análisis , Agua/análisis , Colorimetría , Monitoreo del Ambiente , Cromatografía de Gases y Espectrometría de Masas , Volatilización , Calidad del Agua
3.
Anal Chem ; 85(20): 9898-906, 2013 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-24050110

RESUMEN

The development of a direct analysis in real time-mass spectrometry (DART-MS) method and first prototype vaporizer for the detection of low molecular weight (∼30-100 Da) contaminants representative of those detected in water samples from the International Space Station is reported. A temperature-programmable, electro-thermal vaporizer (ETV) was designed, constructed, and evaluated as a sampling interface for DART-MS. The ETV facilitates analysis of water samples with minimum user intervention while maximizing analytical sensitivity and sample throughput. The integrated DART-ETV-MS methodology was evaluated in both positive and negative ion modes to (1) determine experimental conditions suitable for coupling DART with ETV as a sample inlet and ionization platform for time-of-flight MS, (2) to identify analyte response ions, (3) to determine the detection limit and dynamic range for target analyte measurement, and (4) to determine the reproducibility of measurements made with the method when using manual sample introduction into the vaporizer. Nitrogen was used as the DART working gas, and the target analytes chosen for the study were ethyl acetate, acetone, acetaldehyde, ethanol, ethylene glycol, dimethylsilanediol, formaldehyde, isopropanol, methanol, methylethyl ketone, methylsulfone, propylene glycol, and trimethylsilanol.

4.
Anal Chem ; 76(16): 4881-7, 2004 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-15307801

RESUMEN

This paper reports the design and ground-based testing of a multiplexed colorimetric solid-phase extraction (MC-SPE) platform for the rapid determination of multiple water quality parameters in a simple set of operational steps. Colorimetric solid-phase extraction (C-SPE) is an analytical platform that combines impregnated colorimetric reagents on a solid-phase extraction membrane and diffuse reflectance spectroscopy to quantify trace analytes in water. In extending C-SPE to MC-SPE, a filter holder that incorporates discrete analysis channels and a jig that facilitates the concurrent operation of multiple syringes have been designed, enabling the simultaneous determination of three different measures of water quality. Separate, single-parameter membranes, placed in a readout cartridge create unique, parameter-specific addresses at the exit of each channel. Following sample exposure, the diffuse reflectance spectrum of each address is collected serially and the Kubelka-Munk function is used to quantify each water quality parameter via calibration curves. Performance evaluations of the MC-SPE platform were conducted using sample pH, silver(I), and nickel(II). Determinations of silver(I) (0.05-0.5 ppm) and nickel(II) (1.8-5.0 ppm) follow established C-SPE methods on reversed-phase extraction membranes using 5-(p-dimethylaminobenzylidene)rhodanine and dimethylglyoxime, respectively, as colorimetric reagents. Sample pH (2.5-5.0) is measured using an anion-exchange membrane impregnated with fluorescein. These determinations require approximately 120 s to complete using a total sample volume of 3.0 mL. The extension of MC-SPE to the determination of a greater number of analytes and its potential application to space and earth-bound monitoring needs are briefly discussed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...