Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Plant Sci ; 13: 790563, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35222461

RESUMEN

Nitrogen fertilization has been reported to influence the development of clubroot, a root disease of Brassicaceae species, caused by the obligate protist Plasmodiophora brassicae. Our previous works highlighted that low-nitrogen fertilization induced a strong reduction of clubroot symptoms in some oilseed rape genotypes. To further understand the underlying mechanisms, the response to P. brassicae infection was investigated in two genotypes "Yudal" and HD018 harboring sharply contrasted nitrogen-driven modulation of resistance toward P. brassicae. Targeted hormone and metabolic profiling, as well as RNA-seq analysis, were performed in inoculated and non-inoculated roots at 14 and 27 days post-inoculation, under high and low-nitrogen conditions. Clubroot infection triggered a large increase of SA concentration and an induction of the SA gene markers expression whatever the genotype and nitrogen conditions. Overall, metabolic profiles suggested that N-driven induction of resistance was independent of SA signaling, soluble carbohydrate and amino acid concentrations. Low-nitrogen-driven resistance in "Yudal" was associated with the transcriptional regulation of a small set of genes, among which the induction of NRT2- and NR-encoding genes. Altogether, our results indicate a possible role of nitrate transporters and auxin signaling in the crosstalk between plant nutrition and partial resistance to pathogens.

2.
Data Brief ; 38: 107392, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34611536

RESUMEN

Oilseed rape (Brassica napus L.) is the third largest oil crop worldwide. Like other crops, oilseed rape faces unfavorable environmental conditions resulting from multiple and combined actions of abiotic and biotic constraints that occur throughout the growing season. In particular drought severely reduces seed yield but also impacts seed quality in oilseed rape. In addition, clubroot disease, caused by the pathogen Plasmodiophora brassicae, limits the yield of the oilseed rape crops grown in infected areas. Clubroot induces swellings or galls on the roots that decrease the flow of water and nutrients within the plant. Furthermore, combinations of different stresses lead to complex plant responses that can not be predicted by the simple addition of individual stress responses. Indeed, an abiotic constraint can either reduce or stimulate the plant response to a pathogen or pest. Transcriptome datasets from different conditions are key resources to improve our knowledge of environmental stress-resistance mechanisms in plant organs. Here, we describe a RNA-seq dataset consisting of 72 samples of immature B. napus seeds from plants grown either under drought, infected with P. brassicae, or a combination of both stresses. A total of 67.6 Gb of transcriptome paired-end reads were filtered, mapped onto the B. napus reference genome Darmor-bzh and used for identification of differentially expressed genes and gene ontology enrichment. The raw reads are available under accession PRJNA738318 at NCBI Sequence Read Archive (SRA) repository. The dataset is a resource for the scientific community exploring seed plasticity.

3.
Front Microbiol ; 12: 701067, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34305867

RESUMEN

Nitrogen fertilization can affect the susceptibility of Brassica napus to the telluric pathogen Plasmodiophora brassicae. Our previous works highlighted that the influence of nitrogen can strongly vary regarding plant cultivar/pathogen strain combinations, but the underlying mechanisms are unknown. The present work aims to explore how nitrogen supply can affect the molecular physiology of P. brassicae through its life epidemiological cycle. A time-course transcriptome experiment was conducted to study the interaction, under two conditions of nitrogen supply, between isolate eH and two B. napus genotypes (Yudal and HD-018), harboring (or not harboring) low nitrogen-conditional resistance toward this isolate (respectively). P. brassicae transcriptional patterns were modulated by nitrogen supply, these modulations being dependent on both host-plant genotype and kinetic time. Functional analysis allowed the identification of P. brassicae genes expressed during the secondary phase of infection, which may play a role in the reduction of Yudal disease symptoms in low-nitrogen conditions. Candidate genes included pathogenicity-related genes ("NUDIX," "carboxypeptidase," and "NEP-proteins") and genes associated to obligate biotrophic functions of P. brassicae. This work illustrates the importance of considering pathogen's physiological responses to get a better understanding of the influence of abiotic factors on clubroot resistance/susceptibility.

4.
Microb Biotechnol ; 13(5): 1648-1672, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32686326

RESUMEN

The contribution of surrounding plant microbiota to disease development has led to the 'pathobiome' concept, which represents the interaction between the pathogen, the host plant and the associated biotic microbial community, resulting or not in plant disease. The aim herein is to understand how the soil microbial environment may influence the functions of a pathogen and its pathogenesis, and the molecular response of the plant to the infection, with a dual-RNAseq transcriptomics approach. We address this question using Brassica napus and Plasmodiophora brassicae, the pathogen responsible for clubroot. A time-course experiment was conducted to study interactions between P. brassicae, two B. napus genotypes and three soils harbouring high, medium or low microbiota diversities and levels of richness. The soil microbial diversity levels had an impact on disease development (symptom levels and pathogen quantity). The P. brassicae and B. napus transcriptional patterns were modulated by these microbial diversities, these modulations being dependent on the host genotype plant and the kinetic time. The functional analysis of gene expressions allowed the identification of pathogen and plant host functions potentially involved in the change of plant disease level, such as pathogenicity-related genes (NUDIX effector) in P. brassicae and plant defence-related genes (glucosinolate metabolism) in B. napus.


Asunto(s)
Brassica napus , Microbiota , Plasmodiophorida , Enfermedades de las Plantas , Plasmodiophorida/genética , Suelo , Transcriptoma
5.
PLoS One ; 15(7): e0236429, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32730288

RESUMEN

The soilborne fungus Gaeumannomyces tritici (G. tritici) causes the take-all disease on wheat roots. Ambient pH has been shown to be critical in different steps of G. tritici life cycle such as survival in bulk soil, saprophytic growth, and pathogenicity on plants. There are however intra-specific variations and we previously found two types of G. tritici strains that grow preferentially either at acidic pH or at neutral/alkaline pH; gene expression involved in pH-signal transduction pathway and pathogenesis was differentially regulated in two strains representative of these types. To go deeper in the description of the genetic pathways and the understanding of this adaptative mechanism, transcriptome sequencing was achieved on two strains (PG6 and PG38) which displayed opposite growth profiles in two pH conditions (acidic and neutral). PG6, growing better at acidic pH, overexpressed in this condition genes related to cell proliferation. In contrast, PG38, which grew better at neutral pH, overexpressed in this condition genes involved in fatty acids and amino acid metabolisms, and genes potentially related to pathogenesis. This strain also expressed stress resistance mechanisms at both pH, to assert a convenient growth under various ambient pH conditions. These differences in metabolic pathway expression between strains at different pH might buffer the effect of field or soil variation in wheat fields, and explain the success of the pathogen.


Asunto(s)
Ascomicetos/genética , Transcriptoma/genética , Ascomicetos/crecimiento & desarrollo , Ascomicetos/aislamiento & purificación , Perfilación de la Expresión Génica , Regulación Fúngica de la Expresión Génica , Ontología de Genes , Genes Fúngicos , Concentración de Iones de Hidrógeno , Micelio/crecimiento & desarrollo , Especificidad de la Especie , Triticum
6.
PLoS One ; 14(2): e0204195, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30802246

RESUMEN

The temporal dynamics of rhizosphere and root microbiota composition was compared between healthy and infected Chinese cabbage plants by the pathogen Plasmodiophora brassicae. When inoculated with P. brassicae, disease was measured at five sampling dates from early root hair infection to late gall development. The first symptoms of clubroot disease appeared 14 days after inoculation (DAI) and increased drastically between 14 and 35 DAI. The structure of microbial communities associated to rhizosphere soil and root from healthy and inoculated plants was characterized through high-throughput DNA sequencing of bacterial (16S) and fungal (18S) molecular markers and compared at each sampling date. In healthy plants, Proteobacteria and Bacteroidetes bacterial phyla dominated the rhizosphere and root microbiota of Chinese cabbage. Rhizosphere bacterial communities contained higher abundances of Actinobacteria and Firmicutes compared to the roots. Moreover, a drastic shift of fungal communities of healthy plants occurred between the two last sampling dates, especially in plant roots, where most of Ascomycota fungi dominated until they were replaced by a fungus assigned to the Chytridiomycota phylum. Parasitic invasion by P. brassicae disrupted the rhizosphere and root-associated community assembly at a late step during the root secondary cortical infection stage of clubroot disease. At this stage, Flavisolibacter and Streptomyces in the rhizosphere, and Bacillus in the roots, were drastically less abundant upon parasite invasion. Rhizosphere of plants colonized by P. brassicae was significantly more invaded by the Chytridiomycota fungus, which could reflect a mutualistic relationship in this compartment between these two microorganisms.


Asunto(s)
Brassica rapa/microbiología , Brassica rapa/parasitología , Microbiota , Enfermedades de las Plantas/microbiología , Plasmodiophorida , Bacterias/genética , Biodiversidad , Progresión de la Enfermedad , Hongos/genética , Enfermedades de las Plantas/parasitología , Raíces de Plantas/microbiología , ARN Ribosómico 16S/genética , ARN Ribosómico 18S/genética , Microbiología del Suelo , Factores de Tiempo
7.
Genomics ; 111(6): 1629-1640, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-30447277

RESUMEN

Plasmodiophora brassicae is an obligate biotrophic pathogenic protist responsible for clubroot, a root gall disease of Brassicaceae species. In addition to the reference genome of the P. brassicae European e3 isolate and the draft genomes of Canadian or Chinese isolates, we present the genome of eH, a second European isolate. Refinement of the annotation of the eH genome led to the identification of the mitochondrial genome sequence, which was found to be bigger than that of Spongospora subterranea, another plant parasitic Plasmodiophorid phylogenetically related to P. brassicae. New pathways were also predicted, such as those for the synthesis of spermidine, a polyamine up-regulated in clubbed regions of roots. A P. brassicae pathway genome database was created to facilitate the functional study of metabolic pathways in transcriptomics approaches. These available tools can help in our understanding of the regulation of P. brassicae metabolism during infection and in response to diverse constraints.


Asunto(s)
Bases de Datos Genéticas , Genoma Mitocondrial , Genoma de Protozoos , Redes y Vías Metabólicas/fisiología , Filogenia , Plasmodiophorida , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , ADN Protozoario/genética , ADN Protozoario/metabolismo , Plasmodiophorida/genética , Plasmodiophorida/metabolismo
8.
Fungal Genet Biol ; 61: 80-9, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24120452

RESUMEN

The soilborne fungus Gaeumannomyces graminis var. tritici (Ggt) causes take-all, a wheat root disease. In an original strain-specific way, a previous study indicates that inside the Ggt species, some strains grow preferentially at acidic pH and other strains at neutral/alkaline pH. The most important mechanism for a fungal response to the environmental pH is the Pal pathway which integrates the products of the six pal genes and the transcription factor PacC. To evaluate whether the Ggt strain-specific growth in function of the ambient pH is mediated via the Pal pathway, a transcriptional study of the genes encoding this pathway was carried out. This study provided the first evidence that the pH signalling pathway similar to those described in other fungi operated in Ggt. The pacC gene was induced at neutral pH whatever the strain. In an original way, the expression of Ggt genes coding for the different Pal proteins depended on the strain and on the ambient pH. In the strain growing better at acidic pH, few pal genes were pH-regulated, and some were overexpressed at neutral pH when regulated. In the strain growing better at neutral pH, underexpression of most of the pal genes at neutral pH occurred. The strains displayed higher gene expression in the ambient pH that unfavoured their growth as if it was a compensation system. All pH taken together, a globally weaker Pal transcript level occurred in the strains that were less sensitive to acidic pH, and on the contrary, the strain growing better on neutral pH showed higher Pal mRNA levels. The expression of genes involved in pathogenesis and saprophytic growth was also regulated by the ambient pH and the strain: each gene displayed a specific pH-regulation that was similar between strains. But all pH taken together, the global transcript levels of four out of six genes were higher in the strain growing better on neutral pH. Altogether, for the first time, the results show that inside a species, conditions affecting environmental pH modulate the expression of genes in an original strain-specific way.


Asunto(s)
Ascomicetos/efectos de los fármacos , Ascomicetos/fisiología , Regulación Fúngica de la Expresión Génica , Genes Fúngicos , Transducción de Señal , Estrés Fisiológico , Ascomicetos/genética , Ascomicetos/crecimiento & desarrollo , Perfilación de la Expresión Génica , Concentración de Iones de Hidrógeno , Triticum/microbiología
9.
Environ Microbiol Rep ; 5(3): 393-403, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23754720

RESUMEN

Several bacterial strains of the Pseudomonas genus provide plant growth stimulation, plant protection against pests or bioremediation. Among these bacteria, P. fluorescens Pf29Arp reduces the severity of take-all, a disease caused by the pathogenic fungus Gaeumannomyces graminis var. tritici (Ggt) on wheat roots. In this study, we obtained a draft genome of Pf29Arp and subsequent comparative genomic analyses have revealed that this bacterial strain is closely related to strains of the 'P. brassicacearum-like' subgroup including P. brassicacearum ssp. brassicacearum NFM421 and P. fluorescens F113. Despite an overall chromosomal organization similar to these strains, a number of features including antibiotic synthesis gene clusters from secondary metabolism are not found in the Pf29Arp genome. But Pf29Arp possesses different protein secretion systems including type III (T3SS) and type VI (T6SS) secretion systems. Pf29Arp is the first Pseudomonas sp. strain described with four T6SS clusters (cluster I, II, III and IV). In addition, some protein-coding genes involved in the assembly of these secretion systems are basally expressed during Pf29Arp colonization of healthy wheat roots and display different expression patterns on necrotized roots caused by Ggt. These data suggest a role of T3SS and T6SS in the Pf29Arp adaptation to different root environments.


Asunto(s)
Proteínas Bacterianas/genética , Cromosomas Bacterianos , Regulación Bacteriana de la Expresión Génica , Genoma Bacteriano , Raíces de Plantas/microbiología , Pseudomonas fluorescens/genética , Triticum/microbiología , Adaptación Fisiológica , Ascomicetos/crecimiento & desarrollo , Ascomicetos/patogenicidad , Proteínas Bacterianas/metabolismo , Agentes de Control Biológico , Mapeo Cromosómico , Familia de Multigenes , Filogenia , Pseudomonas fluorescens/clasificación , Pseudomonas fluorescens/metabolismo , Rizosfera , Simbiosis/fisiología
10.
Mol Plant Pathol ; 12(9): 839-54, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21726382

RESUMEN

The main effects of antagonistic rhizobacteria on plant pathogenic fungi are antibiosis, fungistasis or an indirect constraint through the induction of a plant defence response. To explore different biocontrol mechanisms, an in vitro confrontation assay was conducted with the rhizobacterium Pseudomonas fluorescens Pf29Arp as a biocontrol agent of the fungus Gaeumannomyces graminis var. tritici (Ggt) on wheat roots. In parallel with the assessment of disease extension, together with the bacterial and fungal root colonization rates, the transcript levels of candidate fungal pathogenicity and plant-induced genes were monitored during the 10-day infection process. The bacterial inoculation of wheat roots with the Pf29Arp strain reduced the development of Ggt-induced disease expressed as attack frequency and necrosis length. The growth rates of Ggt and Pf29Arp, monitored through quantitative polymerase chain reaction of DNA amounts with a part of the Ggt 18S rDNA gene and a specific Pf29Arp strain detection probe, respectively, increased throughout the interactions. Bacterial antagonism and colonization had no significant effect on root colonization by Ggt. The expression of fungal and plant genes was quantified in planta by quantitative reverse transcription-polymerase chain reaction during the interactions thanks to the design of specific primers and an innovative universal reference system. During the early stages of the tripartite interaction, several of the fungal genes assayed were down-regulated by Pf29Arp, including two laccases, a ß-1,3-exoglucanase and a mitogen-activated protein kinase. The plant host glutathione-S-transferase gene was induced by Ggt alone and up-regulated by Pf29Arp bacteria in interaction with the pathogen. We conclude that Pf29Arp antagonism acts through the alteration of fungal pathogenesis and probably through the activation of host defences.


Asunto(s)
Ascomicetos/patogenicidad , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Raíces de Plantas/microbiología , Pseudomonas fluorescens/fisiología , Triticum/microbiología , Ascomicetos/genética , Agentes de Control Biológico , Proteínas de Plantas/genética , Raíces de Plantas/genética , Pseudomonas fluorescens/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Triticum/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...