Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Glycobiology ; 34(9)2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39115362

RESUMEN

α -Lactalbumin, an abundant protein present in the milk of most mammals, is associated with biological, nutritional and technological functionality. Its sequence presents N-glycosylation motifs, the occupancy of which is species-specific, ranging from no to full occupancy. Here, we investigated the N-glycosylation of bovine α-lactalbumin in colostrum and milk sampled from four individual cows, each at 9 time points starting from the day of calving up to 28.0 d post-partum. Using a glycopeptide-centric mass spectrometry-based glycoproteomics approach, we identified N-glycosylation at both Asn residues found in the canonical Asn-Xxx-Ser/Thr motif, i.e. Asn45 and Asn74 of the secreted protein. We found similar glycan profiles in all four cows, with partial site occupancies, averaging at 35% and 4% for Asn45 and Asn74, respectively. No substantial changes in occupancy occurred over lactation at either site. Fucosylation, sialylation, primarily with N-acetylneuraminic acid (Neu5Ac), and a high ratio of N,N'-diacetyllactosamine (LacdiNAc)/N-acetyllactosamine (LacNAc) motifs were characteristic features of the identified N-glycans. While no substantial changes occurred in site occupancy at either site during lactation, the glycoproteoform (i.e. glycosylated form of the protein) profile revealed dynamic changes; the maturation of the α-lactalbumin glycoproteoform repertoire from colostrum to mature milk was marked by substantial increases in neutral glycans and the number of LacNAc motifs per glycan, at the expense of LacdiNAc motifs. While the implications of α-lactalbumin N-glycosylation on functionality are still unclear, we speculate that N-glycosylation at Asn74 results in a structurally and functionally different protein, due to competition with the formation of its two intra-molecular disulphide bridges.


Asunto(s)
Calostro , Lactalbúmina , Leche , Lactalbúmina/metabolismo , Lactalbúmina/química , Animales , Glicosilación , Calostro/química , Calostro/metabolismo , Bovinos , Leche/química , Leche/metabolismo , Femenino , Lactancia/metabolismo , Amino Azúcares/química , Amino Azúcares/metabolismo , Glicopéptidos/metabolismo , Glicopéptidos/química , Glicopéptidos/análisis , Lactosa/metabolismo , Lactosa/química
2.
J Am Soc Mass Spectrom ; 35(6): 1320-1329, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38767111

RESUMEN

Immunoglobulins M (IgM) are key natural antibodies produced initially in humoral immune response. Due to their large molecular weights and extensive glycosylation loads, IgMs represent a challenging target for conventional mass analysis. Charge detection mass spectrometry (CDMS) may provide a unique approach to tackle heterogeneous IgM assemblies, although this technique can be quite laborious and technically challenging. Here, we describe the use of online size exclusion chromatography (SEC) to automate buffer exchange and sample introduction, and demonstrate its adaptability with Orbitrap-based CDMS. We discuss optimal experimental parameters for online SEC-CDMS experiments, including ion activation, choice of column, and resolution. Using this approach, CDMS histograms containing hundreds of individual ion signals can be obtained in as little as 5 min from single injections of <1 µg of sample. To demonstrate the unique utility of online SEC-CDMS, we performed real-time kinetic monitoring of pentameric IgM digestion by the protease IgMBRAZOR, which cleaves specifically in the hinge region of IgM. Several digestion intermediates corresponding to processive losses of F(ab')2 subunits could be mass-resolved and identified by SEC-CDMS. Interestingly, we find that for the J-chain linked IgM pentamer, cleavage of one of the F(ab')2 subunits is much slower than the other four F(ab')2 subunits, which we attribute to the symmetry-breaking interactions of the J-chain within the pentameric IgM structure. The online SEC-CDMS methodologies described here open new avenues into the higher throughput automated analysis of heterogeneous, high-mass protein assemblies by CDMS.


Asunto(s)
Cromatografía en Gel , Inmunoglobulina M , Espectrometría de Masas , Inmunoglobulina M/química , Inmunoglobulina M/análisis , Cromatografía en Gel/métodos , Espectrometría de Masas/métodos , Humanos
3.
Glycobiology ; 33(2): 115-125, 2023 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-36611013

RESUMEN

We monitored longitudinal changes in bovine milk IgG in samples from four cows at 9 time points in between 0.5 and 28 days following calving. We used peptide-centric LC-MS/MS on proteolytic digests of whole bovine milk, resulting in the combined identification of 212 individual bovine milk protein sequences, with IgG making up >50 percent of the protein content of every 0.5 d colostrum sample, which reduced to ≤3 percent in mature milk. In parallel, we analyzed IgG captured from the bovine milk samples to characterize its N-glycosylation, using dedicated methods for bottom-up glycoproteomics employing product ion-triggered hybrid fragmentation; data are available via ProteomeXchange with identifier PXD037755. The bovine milk IgG N-glycosylation profile was revealed to be very heterogeneous, consisting of >40 glycoforms. Furthermore, these N-glycosylation profiles changed substantially over the period of lactation, but consistently across the four individual cows. We identified NeuAc sialylation as the key abundant characteristic of bovine colostrum IgG, significantly decreasing in the first days of lactation, and barely detectable in mature bovine milk IgG. We also report, for the first time to our knowledge, the identification of subtype IgG3 in bovine milk, alongside the better-documented IgG1 and IgG2. The detailed molecular characteristics we describe of the bovine milk IgG, and their dynamic changes during lactation, are important not only for the fundamental understanding of the calf's immune development, but also for understanding bovine milk and its bioactive components in the context of human nutrition.


Asunto(s)
Calostro , Inmunoglobulina G , Embarazo , Femenino , Animales , Bovinos , Humanos , Calostro/metabolismo , Inmunoglobulina G/metabolismo , Glicosilación , Cromatografía Liquida , Espectrometría de Masas en Tándem , Lactancia
4.
Int J Mol Sci ; 22(15)2021 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-34360914

RESUMEN

Human milk is a vital biofluid containing a myriad of molecular components to ensure an infant's best start at a healthy life. One key component of human milk is ß-casein, a protein which is not only a structural constituent of casein micelles but also a source of bioactive, often antimicrobial, peptides contributing to milk's endogenous peptidome. Importantly, post-translational modifications (PTMs) like phosphorylation and glycosylation typically affect the function of proteins and peptides; however, here our understanding of ß-casein is critically limited. To uncover the scope of proteoforms and endogenous peptidoforms we utilized mass spectrometry (LC-MS/MS) to achieve in-depth longitudinal profiling of ß-casein from human milk, studying two donors across 16 weeks of lactation. We not only observed changes in ß-casein's known protein and endogenous peptide phosphorylation, but also in previously unexplored O-glycosylation. This newly discovered PTM of ß-casein may be important as it resides on known ß-casein-derived antimicrobial peptide sequences.


Asunto(s)
Caseínas/metabolismo , Glicopéptidos/química , Lactancia/metabolismo , Leche Humana/química , Procesamiento Proteico-Postraduccional/fisiología , Proteoma/química , Lactancia Materna , Cromatografía Liquida/métodos , Femenino , Glicosilación , Voluntarios Sanos , Humanos , Lactante , Estudios Longitudinales , Fosforilación , Espectrometría de Masas en Tándem/métodos
5.
Food Microbiol ; 59: 14-22, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27375240

RESUMEN

The objectives of this study were to evaluate the growth and survival of the model probiotic strain Lactobacillus plantarum WCFS1 in co-culture with traditional yoghurt starters and to investigate the impact of preculturing on their survival and metabolite formation in set-yoghurt. L. plantarum WCFS1 was precultured under sublethal stress conditions (combinations of elevated NaCl and low pH) in a batch fermentor before inoculation in milk. Adaptive responses of L. plantarum WCFS1 were evaluated by monitoring bacterial population dynamics, milk acidification and changes in volatile and non-volatile metabolite profiles of set-yoghurt. The results demonstrated that sublethal preculturing did not significantly affect survival of L. plantarum WCFS1. On the other hand, incorporation of sublethally precultured L. plantarum WCFS1 significantly impaired the survival of Lactobacillus delbrueckii subsp. bulgaricus which consequently reduced the post-acidification of yoghurt during refrigerated storage. A complementary metabolomics approach using headspace SPME-GC/MS and (1)H NMR combined with multivariate statistical analysis revealed substantial impact of sublethally precultured L. plantarum WCFS1 on the metabolite profiles of set-yoghurt. This study provides insight in the technological implications of non-dairy model probiotic strain L. plantarum WCFS1, such as its good stability in fermented milk and the inhibitory effect on post-acidification.


Asunto(s)
Microbiología de Alimentos , Lactobacillus plantarum/crecimiento & desarrollo , Lactobacillus plantarum/metabolismo , Estrés Fisiológico , Yogur/microbiología , Fermentación , Concentración de Iones de Hidrógeno , Lactobacillus delbrueckii/metabolismo , Lactobacillus plantarum/efectos de los fármacos , Metabolómica , Probióticos , Cloruro de Sodio/farmacología , Yogur/análisis
6.
J Dairy Sci ; 99(8): 6842-6851, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26387022

RESUMEN

Lactose is the main carbohydrate in the milk of most species. It is present in virtually all dry dairy ingredients, with levels ranging from <2% (e.g., caseinates, milk protein isolates) to 100% in lactose powders. The presence of lactose has a strong effect on ingredient processing and stability. Lactose can negatively influence powder properties and lead to undesirable effects, such as the stickiness of powder resulting in fouling during drying, or caking and related phenomena during storage. In addition, being a reducing carbohydrate, lactose can also participate in the Maillard reaction with free amino groups of proteins, peptides, and free AA. In this review, the influence of the presence (or absence) of lactose on physiochemical properties of dairy ingredients is reviewed, with particular emphasis on behavior during processing and storage. Particularly important features in this respect are whether lactose is in the (glassy) amorphous phase or in the crystalline phase, which is strongly affected by precrystallization conditions (e.g., in lactose, permeate, and whey powders) and by drying conditions. Furthermore, the moisture content and water activity of the ingredients are important parameters to consider, as they determine both mobility and reactivity, influencing Maillard reactions and concomitant browning, the crystallization of amorphous lactose during storage of dairy ingredients, glass transitions temperatures, and associated stickiness and caking phenomena. For the stickiness and caking, a crucial aspect to take into account is powder particle surface composition in relation to the bulk powder. Lactose is typically underrepresented at the powder surface, as a result of which deviations between observed lactose-induced caking and stickiness temperatures, and determined glass transition temperatures arise. By considering lactose as an integral part of ingredient composition along with all other compositional and environmental properties, lactose behavior in dairy ingredients can be understood, controlled, and optimized. Routes to achieve this are outlined in this review paper.


Asunto(s)
Lactosa/química , Leche/química , Animales , Desecación , Almacenamiento de Alimentos , Proteínas de la Leche/química , Polvos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA