Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 329
Filtrar
1.
Nature ; 630(8016): 368-374, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38867128

RESUMEN

Despite its disordered liquid-like structure, glass exhibits solid-like mechanical properties1. The formation of glassy material occurs by vitrification, preventing crystallization and promoting an amorphous structure2. Glass is fundamental in diverse fields of materials science, owing to its unique optical, chemical and mechanical properties as well as durability, versatility and environmental sustainability3. However, engineering a glassy material without compromising its properties is challenging4-6. Here we report the discovery of a supramolecular amorphous glass formed by the spontaneous self-organization of the short aromatic tripeptide YYY initiated by non-covalent cross-linking with structural water7,8. This system uniquely combines often contradictory sets of properties; it is highly rigid yet can undergo complete self-healing at room temperature. Moreover, the supramolecular glass is an extremely strong adhesive yet it is transparent in a wide spectral range from visible to mid-infrared. This exceptional set of characteristics is observed in a simple bioorganic peptide glass composed of natural amino acids, presenting a multi-functional material that could be highly advantageous for various applications in science and engineering.


Asunto(s)
Adhesivos , Vidrio , Oligopéptidos , Adhesivos/química , Vidrio/química , Temperatura , Vitrificación , Agua/química , Oligopéptidos/química , Tirosina/química , Luz , Rayos Infrarrojos
2.
Methods Enzymol ; 697: 181-209, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38816123

RESUMEN

While enzymes are potentially useful in various applications, their limited operational stability and production costs have led to an extensive search for stable catalytic agents that will retain the efficiency, specificity, and environmental-friendliness of natural enzymes. Despite extensive efforts, there is still an unmet need for improved enzyme mimics and novel concepts to discover and optimize such agents. Inspired by the catalytic activity of amyloids and the formation of amyloid-like assemblies by metabolites, our group pioneered the development of novel metabolite-metal co-assemblies (bio-nanozymes) that produce nanomaterials mimicking the catalytic function of common metalloenzymes that are being used for various technological applications. In addition to their notable activity, bio-nanozymes are remarkably safe as they are purely composed of amino acids and minerals that are harmless to the environment. The bio-nanozymes exhibit high efficiency and exceptional robustness, even under extreme conditions of temperature, pH, and salinity that are impractical for enzymes. Our group has recently also demonstrated the formation of ordered amino acid co-assemblies showing selective and preferential interactions comparable to the organization of residues in folded proteins. The identified bio-nanozymes can be used in various applications including environmental remediation, synthesis of new materials, and green energy.


Asunto(s)
Aminoácidos , Amiloide , Aminoácidos/química , Aminoácidos/metabolismo , Amiloide/química , Amiloide/metabolismo , Catálisis , Nanoestructuras/química , Metales/química
3.
J Pept Sci ; : e3626, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38810988

RESUMEN

Polylactide (PLA), a biocompatible and biodegradable polymer, is widely used in diverse biomedical applications. However, the industry standard for converting lactide into PLA involves toxic tin (Sn)-based catalysts. To mitigate the use of these harmful catalysts, other environmentally benign metal-containing agents for efficient lactide polymerization have been studied, but these alternatives are hindered by complex synthesis processes, reactivity issues, and selectivity limitations. To overcome these shortcomings, we explored the catalytic activity of Cu-(Phe)2 and Zn-(Phe)2 metal-amino acid co-assemblies as potential catalysts of the ring-opening polymerization (ROP) of lactide into PLA. Catalytic activity of the assemblies was monitored at different temperatures and solvents using 1H-NMR spectroscopy to determine the catalytic parameters. Notably, Zn-(Phe)2 achieved >99% conversion of lactide to PLA within 12 h in toluene under reflux conditions and was found to have first-order kinetics, whereas Cu-(Phe)2 exhibited significantly lower catalytic activity. Following Zn-(Phe)2-mediated catalysis, the resulting PLA had an average molecular weight of 128 kDa and a dispersity index of 1.25 as determined by gel permeation chromatography. Taken together, our minimalistic approach expands the realm of metal-amino acid-based supramolecular catalytic nanomaterials useful in the ROP of lactide. This advancement shows promise for the future design of simplified biocatalysts in both industrial and biomedical applications.

4.
ACS Appl Bio Mater ; 7(4): 2309-2324, 2024 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-38478987

RESUMEN

Peptide-based nanomaterials can serve as promising drug delivery agents, facilitating the release of active pharmaceutical ingredients while reducing the risk of adverse reactions. We previously demonstrated that Cyclo-Histidine-Histidine (Cyclo-HH), co-assembled with cancer drug Epirubicin, zinc, and nitrate ions, can constitute an attractive drug delivery system, combining drug self-encapsulation, enhanced fluorescence, and the ability to transport the drug into cells. Here, we investigated both computationally and experimentally whether Cyclo-HH could co-assemble, in the presence of zinc and nitrate ions, with other cancer drugs with different physicochemical properties. Our studies indicated that Methotrexate, in addition to Epirubicin and its epimer Doxorubicin, and to a lesser extent Mitomycin-C and 5-Fluorouracil, have the capacity to co-assemble with Cyclo-HH, zinc, and nitrate ions, while a significantly lower propensity was observed for Cisplatin. Epirubicin, Doxorubicin, and Methorexate showed improved drug encapsulation and drug release properties, compared to Mitomycin-C and 5-Fluorouracil. We demonstrated the biocompatibility of the co-assembled systems, as well as their ability to intracellularly release the drugs, particularly for Epirubicin, Doxorubicin, and Methorexate. Zinc and nitrate were shown to be important in the co-assembly, coordinating with drugs and/or Cyclo-HH, thereby enabling drug-peptide as well as drug-drug interactions in successfully formed nanocarriers. The insights could be used in the future design of advanced cancer therapeutic systems with improved properties.


Asunto(s)
Antineoplásicos , Neoplasias , Epirrubicina/uso terapéutico , Histidina/química , Mitomicina , Nitratos , Antineoplásicos/uso terapéutico , Antineoplásicos/química , Doxorrubicina/uso terapéutico , Doxorrubicina/química , Péptidos/química , Fluorouracilo/uso terapéutico , Zinc , Neoplasias/tratamiento farmacológico
5.
Chem Soc Rev ; 53(8): 3640-3655, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38450536

RESUMEN

Hydrogen-bonded porous frameworks (HPFs) are versatile porous crystalline frameworks with diverse applications. However, designing chiral assemblies or biocompatible materials poses significant challenges. Peptide-based hydrogen-bonded porous frameworks (P-HPFs) are an exciting alternative to conventional HPFs due to their intrinsic chirality, tunability, biocompatibility, and structural diversity. Flexible, ultra-short peptide-based P-HPFs (composed of 3 or fewer amino acids) exhibit adaptable porous topologies that can accommodate a variety of guest molecules and capture hazardous greenhouse gases. Longer, folded peptides present challenges and opportunities in designing P-HPFs. This review highlights recent developments in P-HPFs using ultra-short peptides, folded peptides, and foldamers, showcasing their utility for gas storage, chiral recognition, chiral separation, and medical applications. It also addresses design challenges and future directions in the field.


Asunto(s)
Enlace de Hidrógeno , Péptidos , Péptidos/química , Porosidad
6.
Biophys Chem ; 308: 107215, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38432113

RESUMEN

Phenylketonuria is characterized by the accumulation of phenylalanine, resulting in severe cognitive and neurological disorders if not treated by a remarkably strict diet. There are two approved drugs today, yet both provide only a partial solution. We have previously demonstrated the formation of amyloid-like toxic assemblies by aggregation of phenylalanine, suggesting a new therapeutic target to be further pursued. Moreover, we showed that compounds that halt the formation of these assemblies also prevent their resulting toxicity. Here, we performed high-throughput screening, searching for compounds with inhibitory effects on phenylalanine aggregation. Morin hydrate, one of the most promising hits revealed during the screen, was chosen to be tested in vivo using a phenylketonuria mouse model. Morin hydrate significantly improved cognitive and motor function with a reduction in the number of phenylalanine brain deposits. Moreover, while phenylalanine levels remained high, we observed a recovery in dopaminergic, adrenergic, and neuronal markers. To conclude, the ability of Morin hydrate to halt phenylalanine aggregation without reducing phenylalanine levels implies the toxic role of the phenylalanine assemblies in phenylketonuria and opens new avenues for disease-modifying treatment.


Asunto(s)
Fenilalanina , Fenilcetonurias , Ratones , Animales , Fenilalanina/uso terapéutico , Estudios Prospectivos , Fenilcetonurias/tratamiento farmacológico , Amiloide/metabolismo , Encéfalo
7.
Sci Adv ; 10(10): eadn2265, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38446894

RESUMEN

Metal anodes are emerging as culminating solutions for the development of energy-dense batteries in either aprotic, aqueous, or solid battery configurations. However, unlike traditional intercalation electrodes, the low utilization of "hostless" metal anodes due to the intrinsically disordered plating/stripping impedes their practical applications. Herein, we report ordered planar plating/stripping in a bulk zinc (Zn) anode to achieve an extremely high depth of discharge exceeding 90% with negligible thickness fluctuation and long-term stable cycling. The Zn can be plated/stripped with (0001)Zn preferential orientation throughout the consecutive charge/discharge process, assisted by a self-assembled supramolecular bilayer at the Zn anode-electrolyte interface. Through real-time tracking of the Zn atoms migration, we reveal that the ordered planar plating/stripping is driven by the construction of in-plane Zn─N bindings and the gradient energy landscape at the reaction fronts. The breakthrough results provide alternative insights into the ordered plating/stripping of metal anodes toward rechargeable energy-dense batteries.

8.
FEBS J ; 291(10): 2209-2220, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38383986

RESUMEN

Yeast cells are extensively used as a key model organism owing to their highly conserved genome, metabolic pathways, and cell biology processes. To assist in genetic engineering and analysis, laboratory yeast strains typically harbor auxotrophic selection markers. When uncompensated, auxotrophic markers cause significant phenotypic bias compared to prototrophic strains and have different combinatorial influences on the metabolic network. Here, we used BY4741, a laboratory strain commonly used as a "wild type" strain in yeast studies, to generate a set of revertant strains, containing all possible combinations of four common auxotrophic markers (leu2∆, ura3∆, his3∆1, met15∆). We examined the effect of the auxotrophic combinations on complex phenotypes such as resistance to rapamycin, acetic acid, and ethanol. Among the markers, we found that leucine auxotrophy most significantly affected the phenotype. We analyzed the phenotypic bias caused by auxotrophy at the genomic level using a prototrophic version of a genome-wide deletion library and a decreased mRNA perturbation (DAmP) library. Prototrophy was found to suppress rapamycin sensitivity in many mutants previously annotated for the phenotype, raising a possible need for reevaluation of the findings in a native metabolic context. These results reveal a significant phenotypic bias caused by common auxotrophic markers and support the use of prototrophic wild-type strains in yeast research.


Asunto(s)
Fenotipo , Saccharomyces cerevisiae , Sirolimus , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/efectos de los fármacos , Sirolimus/farmacología , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Etanol/farmacología , Etanol/metabolismo , Ácido Acético/metabolismo , Ácido Acético/farmacología , Marcadores Genéticos , Leucina/metabolismo , Leucina/farmacología , Leucina/genética
9.
J Mater Chem B ; 12(11): 2855-2868, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38415850

RESUMEN

Bacterial infections are of major medical concern due to antibiotic resistance. Carbon quantum dots (CDs) have emerged as potentially excellent biomaterials for multifunctional applications due to their low toxicity, outstanding water solubility, high fluorescence, and high biocompatibility. All of these properties allow CDs to be exceptional biomaterials for inhibiting the growth of bacteria and stopping biofilm formation due to their strong binding affinity, cell wall penetration, and solubilizing biofilm in water. Here, we describe a strategy for one-pot synthesis of histidine-derived zinc-doped N-doped CDs (Zn-NCDs) by a hydrothermal method for inhibiting the growth of both Gram-positive and Gram-negative bacteria without harming mammalian cells. The NCDs and Zn-NCDs showed uniform sizes (∼6 nm), crystallinity, good photostability, high quantum yield (76%), and long decay time (∼5 ns). We also studied their utilization for live cell bio-imaging and the antimicrobial properties towards the Gram-positive Staphylococcus aureus and the Gram-negative Pseudomonas aeruginosa. Importantly, the Zn-NCDs could penetrate the biofilm and bacterial cell wall to effectively inhibit the growth of bacteria and subsequently inhibit biofilm formation. Thus, the structure, chemical composition, and low toxicity properties of the newly-developed Zn-NCDs exemplify a promising novel method for the preparation of nano-level antibacterial drugs.


Asunto(s)
Puntos Cuánticos , Animales , Puntos Cuánticos/química , Antibacterianos/farmacología , Histidina , Carbono/química , Bacterias Gramnegativas , Bacterias Grampositivas , Zinc/química , Agua , Biopelículas , Materiales Biocompatibles/farmacología , Mamíferos
10.
ACS Nano ; 18(3): 2421-2433, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38190624

RESUMEN

Carbon quantum dots (CQDs) are one of the most promising types of fluorescent nanomaterials due to their exceptional water solubility, excellent optical properties, biocompatibility, chemical inertness, excellent refractive index, and photostability. Nitrogen-containing CQDs, which include amino acid based CQDs, are especially attractive due to their high quantum yield, thermal stability, and potential biomedical applications. Recent studies have attempted to improve the preparation of amino acid based CQDs. However, the highest quantum yield obtained for these dots was only 44%. Furthermore, the refractive indices of amino acid derived CQDs were not determined. Here, we systematically explored the performance of CQDs prepared from all 20 coded amino acids using modified hydrothermal techniques allowing more passivation layers on the surface of the dots to optimize their performance. Intriguingly, we obtained the highest refractive indices ever reported for any CQDs. The values differed among the amino acids, with the highest refractive indices found for positively charged amino acids including arginine-CQDs (∼2.1), histidine-CQDs (∼2.0), and lysine-CQDs (∼1.8). Furthermore, the arginine-CQDs reported here showed a nearly 2-fold increase in the quantum yield (∼86%) and a longer decay time (∼8.0 ns) compared to previous reports. In addition, we also demonstrated that all amino acid based CQD materials displayed excitation-dependent emission profiles (from UV to visible) and were photostable, water-soluble, noncytotoxic, and excellent for high contrast live cell imaging or bioimaging. These results indicate that amino acid based CQD materials are high-refractive-index materials applicable for optoelectronic devices, bioimaging, biosensing, and studying cellular organelles in vivo. This extraordinary RI may be highly useful for exploring cellular elements with different densities.


Asunto(s)
Puntos Cuánticos , Refractometría , Aminoácidos , Puntos Cuánticos/química , Carbono/química , Agua , Arginina
11.
Biochem Biophys Res Commun ; 690: 149250, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38039781

RESUMEN

The von Hippel-Lindau protein (pVHL) is a tumor suppressor involved in oxygen regulation via dynamic nucleocytoplasmic shuttling. It plays a crucial role in cell survival by degrading hypoxia-inducible factors (HIFs). Mutations in the VHL gene cause angiogenic tumors, characterized as VHL syndrome. However, aggressive tumors involving wild-type pVHL have also been described but the underlying mechanism remains to be revealed. We have previously shown that pVHL possesses several short amyloid-forming motifs, making it aggregation-prone. In this study, using a series of biophysical assays, we demonstrated that a pVHL-derived fragment (pVHL104-140) that harbors the nuclear export motif and HIF binding site, forms amyloid-like fibrillar structures in vitro by following secondary-nucleation-based kinetics. The peptide also formed amyloids at acidic pH that mimics the tumor microenvironment. We, subsequently, validated the amyloid formation by pVHL in vitro. Using the Curli-dependent amyloid generator (C-DAG) expression system, we confirmed the amyloidogenesis of pVHL in bacterial cells. The pVHL amyloids are an attractive target for therapeutics of the VHL syndrome. Accordingly, we demonstrated in vitro that Purpurin is a potent inhibitor of pVHL fibrillation. The amyloidogenic behavior of wild-type pVHL and its inhibition provide novel insights into the molecular underpinning of the VHL syndrome and its possible treatment.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Enfermedad de von Hippel-Lindau , Humanos , Ubiquitina-Proteína Ligasas/metabolismo , Enfermedad de von Hippel-Lindau/genética , Factores de Transcripción/metabolismo , Carcinoma de Células Renales/metabolismo , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/genética , Genes Supresores de Tumor , Proteínas Amiloidogénicas/genética , Neoplasias Renales/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Microambiente Tumoral
12.
ACS Nano ; 18(2): 1257-1288, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38157317

RESUMEN

Inspired by natural hierarchical self-assembly of proteins and peptides, amino acids, as the basic building units, have been shown to self-assemble to form highly ordered structures through supramolecular interactions. The fabrication of functional biomaterials comprised of extremely simple biomolecules has gained increasing interest due to the advantages of biocompatibility, easy functionalization, and structural modularity. In particular, amino acid based assemblies have shown attractive physical characteristics for various bionanotechnology applications. Herein, we propose a review paper to summarize the design strategies as well as research advances of amino acid based supramolecular assemblies as smart functional materials. We first briefly introduce bioinspired reductionist design strategies and assembly mechanism for amino acid based molecular assembly materials through noncovalent interactions in condensed states, including self-assembly, metal ion mediated coordination assembly, and coassembly. In the following part, we provide an overview of the properties and functions of amino acid based materials toward applications in nanotechnology and biomedicine. Finally, we give an overview of the remaining challenges and future perspectives on the fabrication of amino acid based supramolecular biomaterials with desired properties. We believe that this review will promote the prosperous development of innovative bioinspired functional materials formed by minimalistic building blocks.


Asunto(s)
Aminoácidos , Materiales Biomiméticos , Materiales Biomiméticos/química , Nanotecnología , Péptidos/química , Materiales Biocompatibles
13.
Small ; : e2309493, 2023 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-38072779

RESUMEN

Sulfonic acid-containing bioorganic monomers with wide molecular designability and abundant hydrogen bonding sites hold great potential to design diverse functional biocrystals but have so far not been explored for piezoelectric energy harvesting applications due to the lack of strategies to break the centrosymmetry of their assemblies. Here, a significant molecular packing transformation from centrosymmetric into non-centrosymmetric conformation by the addition of an amide terminus in the sulfonic acid-containing bioorganic molecule is demonstrated, allowing a high electromechanical response. The amide-functionalized molecule self-assembles into a polar supramolecular parallel ß-sheet-like structure with a high longitudinal piezoelectric coefficient d11 = 15.9 pm V-1 that produces the maximal open-circuit voltage of >1 V and the maximal power of 18 nW in nanogenerator devices pioneered. By contrast, molecules containing an amino or a cyclohexyl terminus assemble into highly symmetric 3D hydrogen bonding diamondoid-like networks or 2D double layer structures that show tunable morphologies, thermostability, and mechanical properties but non-piezoelectricity. This work not only presents a facile approach to achieving symmetry transformation of bioorganic assemblies but also demonstrates the terminal group and the property correlation for tailor-made design of high-performance piezoelectric biomaterials.

14.
Int J Mol Sci ; 24(21)2023 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-37958982

RESUMEN

Inborn error of metabolism disorders (IEMs) are a family of diseases resulting from single-gene mutations that lead to the accumulation of metabolites that are usually toxic or interfere with normal cell function. The etiological link between metabolic alteration and the symptoms of IEMs is still elusive. Several metabolites, which accumulate in IEMs, were shown to self-assemble to form ordered structures. These structures display the same biophysical, biochemical, and biological characteristics as proteinaceous amyloid fibrils. Here, we have demonstrated, for the first time, the ability of each of the branched-chain amino acids (BCAAs) that accumulate in maple syrup urine disease (MSUD) to self-assemble into amyloid-like fibrils depicted by characteristic morphology, binding to indicative amyloid-specific dyes and dose-dependent cytotoxicity by a late apoptosis mechanism. We could also detect the presence of the assemblies in living cells. In addition, by employing several in vitro techniques, we demonstrated the ability of known polyphenols to inhibit the formation of the BCAA fibrils. Our study implies that BCAAs possess a pathological role in MSUD, extends the paradigm-shifting concept regarding the toxicity of metabolite amyloid-like structures, and suggests new pathological targets that may lead to highly needed novel therapeutic opportunities for this orphan disease.


Asunto(s)
Enfermedad de la Orina de Jarabe de Arce , Enfermedades Metabólicas , Humanos , Enfermedad de la Orina de Jarabe de Arce/metabolismo , Aminoácidos de Cadena Ramificada/metabolismo , Amiloide/genética , Mutación , Proteínas Amiloidogénicas/genética
15.
ACS Synth Biol ; 12(11): 3189-3204, 2023 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-37916512

RESUMEN

Over the past 2 decades, synthetic biology has yielded ever more complex genetic circuits that are able to perform sophisticated functions in response to specific signals. Yet, genetic circuits are not immediately transferable to an outside-the-lab setting where their performance is highly compromised. We propose introducing a broader test step to the design-build-test-learn workflow to include factors that might contribute to unexpected genetic circuit performance. As a proof of concept, we have designed and evaluated a genetic circuit in various temperatures, inducer concentrations, nonsterilized soil exposure, and bacterial growth stages. We determined that the circuit's performance is dramatically altered when these factors differ from the optimal lab conditions. We observed significant changes in the time for signal detection as well as signal intensity when the genetic circuit was tested under nonoptimal lab conditions. As a learning effort, we then proceeded to generate model predictions in untested conditions, which is currently lacking in synthetic biology application design. Furthermore, broader test and learn steps uncovered a negative correlation between the time it takes for a gate to turn ON and the bacterial growth phases. As the synthetic biology discipline transitions from proof-of-concept genetic programs to appropriate and safe application implementations, more emphasis on test and learn steps (i.e., characterizing parts and circuits for a broad range of conditions) will provide missing insights on genetic circuit behavior outside the lab.


Asunto(s)
Redes Reguladoras de Genes , Biología Sintética , Redes Reguladoras de Genes/genética
16.
Metabolites ; 13(8)2023 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-37623867

RESUMEN

The untargeted approach to mass spectrometry-based metabolomics has a wide potential to investigate health and disease states, identify new biomarkers for diseases, and elucidate metabolic pathways. All this holds great promise for many applications in biological and chemical research. However, the complexity of instrumental parameters on advanced hybrid mass spectrometers can make the optimization of the analytical method immensely challenging. Here, we report a strategy to optimize the selected settings of a hydrophilic interaction liquid chromatography-tandem mass spectrometry method for untargeted metabolomics studies of human plasma, as a sample matrix. Specifically, we evaluated the effects of the reconstitution solvent in the sample preparation procedure, the injection volume employed, and different mass spectrometry-related operating parameters including mass range, the number of data-dependent fragmentation scans, collision energy mode, duration of dynamic exclusion time, and mass resolution settings on the metabolomics data quality and output. This study highlights key instrumental variables influencing the detection of metabolites along with suggested settings for the IQ-X tribrid system and proposes a new methodological framework to ensure increased metabolome coverage.

17.
Chem Soc Rev ; 52(17): 6191-6220, 2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37585216

RESUMEN

The development of next-generation bioelectronics, as well as the powering of consumer and medical devices, require power sources that are soft, flexible, extensible, and even biocompatible. Traditional energy storage devices (typically, batteries and supercapacitors) are rigid, unrecyclable, offer short-lifetime, contain hazardous chemicals and possess poor biocompatibility, hindering their utilization in wearable electronics. Therefore, there is a genuine unmet need for a new generation of innovative energy-harvesting materials that are soft, flexible, bio-compatible, and bio-degradable. Piezoelectric gels or PiezoGels are a smart crystalline form of gels with polar ordered structures that belongs to the broader family of piezoelectric material, which generate electricity in response to mechanical stress or deformation. Given that PiezoGels are structurally similar to hydrogels, they offer several advantages including intrinsic chirality, crystallinity, degree of ordered structures, mechanical flexibility, biocompatibility, and biodegradability, emphasizing their potential applications ranging from power generation to bio-medical applications. Herein, we describe recent examples of new functional PiezoGel materials employed for energy harvesting, sensing, and wound dressing applications. First, this review focuses on the principles of piezoelectric generators (PEGs) and the advantages of using hydrogels as PiezoGels in energy and biomedical applications. Next, we provide a detailed discussion on the preparation, functionalization, and fabrication of PiezoGel-PEGs (P-PEGs) for the applications of energy harvesting, sensing and wound healing/dressing. Finally, this review concludes with a discussion of the current challenges and future directions of P-PEGs.


Asunto(s)
Suministros de Energía Eléctrica , Hidrogeles , Electricidad , Electrónica , Sustancias Peligrosas
18.
Phys Chem Chem Phys ; 25(33): 22124-22129, 2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-37563955

RESUMEN

Metal-organic Co(II)-phenylalanine crystals were studied and were found to possess magnetic properties and long-range spin transport. Magnetic measurements confirmed that in the crystals there are antiferromagnetic interactions between Co(II) and the lattice. The metal-organic crystals (MOCs) also present the chirality-induced spin selectivity (CISS) effect at room temperature. A long-range spin polarization is observed using a magnetic conductive-probe atomic force microscope. The spin polarization is found to be in the range of 35-45%.

19.
J Am Chem Soc ; 145(28): 15331-15342, 2023 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-37392396

RESUMEN

Variation in the molecular architecture significantly affects the electronic and supramolecular structure of biomolecular assemblies, leading to dramatically altered piezoelectric response. However, relationship between molecular building block chemistry, crystal packing and quantitative electromechanical response is still not fully understood. Herein, we systematically explored the possibility to amplify the piezoelectricity of amino acid-based assemblies by supramolecular engineering. We show that a simple change of side-chain in acetylated amino acids leads to increased polarization of the supramolecular arrangements, resulting in significant enhancement of their piezoelectric response. Moreover, compared to most of the natural amino acid assemblies, chemical modification of acetylation increased the maximum piezoelectric tensors. The predicted maximal piezoelectric strain tensor and voltage constant of acetylated tryptophan (L-AcW) assemblies reach 47 pm V-1 and 1719 mV m/N, respectively, comparable to commonly used inorganic materials such as bismuth triborate crystals. We further fabricated an L-AcW crystal-based piezoelectric power nanogenerator that produces a high and stable open-circuit voltage of over 1.4 V under mechanical pressure. For the first time, the illumination of a light-emitting diode (LED) is demonstrated by the power output of an amino acid-based piezoelectric nanogenerator. This work presents the supramolecular engineering toward the systematic modulation of piezoelectric response in amino acid-based assemblies, facilitating the development of high-performance functional biomaterials from simple, readily available, and easily tailored building blocks.


Asunto(s)
Aminoácidos , Triptófano , Acetilación , Materiales Biocompatibles , Bismuto
20.
Angew Chem Int Ed Engl ; 62(38): e202217622, 2023 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-37266966

RESUMEN

The vital role of metabolites across all branches of life and their involvement in various disorders have been investigated for decades. Many metabolites are poorly soluble in water or in physiological buffers and tend to form supramolecular aggregates. On the other hand, in the cell, they should be preserved in a pool and be readily available for the execution of biochemical functions. We thus propose that a quality-control network, termed "metabolostasis", has evolved to regulate the storage and retrieval of aggregation-prone metabolites. Such a system should control metabolite concentration, subcellular localization, supramolecular arrangement, and interaction in dynamic environments, thus enabling normal cellular physiology, healthy development, and preventing disease onset. The paradigm-shifting concept of metabolostasis calls for a reevaluation of the traditional view of metabolite storage and dynamics in physiology and pathology and proposes unprecedented directions for therapeutic targets under conditions where metabolostasis is imbalanced.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...