Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Neurosci ; 18: 1346610, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38638695

RESUMEN

Introduction: The remarkable diversity observed in the structure and development of the molluscan nervous system raises intriguing questions regarding the molecular mechanisms underlying neurogenesis in Mollusca. The expression of SoxB family transcription factors plays a pivotal role in neuronal development, thereby offering valuable insights into the strategies of neurogenesis. Methods: In this study, we conducted gene expression analysis focusing on SoxB-family transcription factors during early neurogenesis in the gastropod Lymnaea stagnalis. We employed a combination of hybridization chain reaction in situ hybridization (HCR-ISH), immunocytochemistry, confocal microscopy, and cell proliferation assays to investigate the spatial and temporal expression patterns of LsSoxB1 and LsSoxB2 from the gastrula stage to hatching, with particular attention to the formation of central ring ganglia. Results: Our investigation reveals that LsSoxB1 demonstrates expanded ectodermal expression from the gastrula to the hatching stage, whereas expression of LsSoxB2 in the ectoderm ceases by the veliger stage. LsSoxB1 is expressed in the ectoderm of the head, foot, and visceral complex, as well as in forming ganglia and sensory cells. Conversely, LsSoxB2 is mostly restricted to the subepithelial layer and forming ganglia cells during metamorphosis. Proliferation assays indicate a uniform distribution of dividing cells in the ectoderm across all developmental stages, suggesting the absence of distinct neurogenic zones with increased proliferation in gastropods. Discussion: Our findings reveal a spatially and temporally extended pattern of SoxB1 expression in a gastropod representative compared to other lophotrochozoan species. This prolonged and widespread expression of SoxB genes may be interpreted as a form of transcriptional neoteny, representing a preadaptation to prolonged neurogenesis. Consequently, it could contribute to the diversification of nervous systems in gastropods and lead to an increase in the complexity of the central nervous system in Mollusca.

2.
Genome Biol Evol ; 15(10)2023 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-37708413

RESUMEN

The sleeping chironomid Polypedilum vanderplanki is capable of anhydrobiosis, a striking example of adaptation to extreme desiccation. Tolerance to complete desiccation in this species is associated with emergence of multiple paralogs of protective genes. One of the gene families highly expressed under anhydrobiosis and involved in this process is protein-L-isoaspartate (D-aspartate) O-methyltransferases (PIMTs). Recently, another closely related midge was discovered, Polypedilum pembai, which is able not only to tolerate desiccation but also to survive multiple desiccation-rehydration cycles. To investigate the evolution of anhydrobiosis in these species, we sequenced and assembled the genome of P. pembai and compared it with P. vanderplanki and also performed a population genomics analysis of several populations of P. vanderplanki and one population of P. pembai. We observe positive selection and radical changes in the genetic architecture of the PIMT locus between the two species, including its amplification in the P. pembai lineage. In particular, PIMT-4, the most highly expressed of these PIMTs, is present in six copies in the P. pembai; these copies differ in expression profiles, suggesting possible sub- or neofunctionalization. The nucleotide diversity of the genomic region carrying these new genes is decreased in P. pembai, but not in the orthologous region carrying the ancestral gene in P. vanderplanki, providing evidence for a selective sweep associated with postduplication adaptation in the former. Overall, our results suggest an extensive relatively recent and likely ongoing adaptation of the mechanisms of anhydrobiosis.

3.
J Appl Physiol (1985) ; 134(5): 1256-1264, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-37055032

RESUMEN

We aimed to explore the effect of the 3-day dry immersion, a model of physical unloading, on mitochondrial function, transcriptomic and proteomic profiles in a slow-twitch soleus muscle of six healthy females. We registered that a marked reduction (25-34%) in the ADP-stimulated respiration in permeabilized muscle fibers was not accompanied by a decrease in the content of mitochondrial enzymes (mass spectrometry-based quantitative proteomics), hence, it is related to the disruption in regulation of respiration. We detected a widespread change in the transcriptomic profile (RNA-seq) upon dry immersion. Downregulated mRNAs were strongly associated with mitochondrial function, as well as with lipid metabolism, glycolysis, insulin signaling, and various transporters. Despite the substantial transcriptomic response, we found no effect on the content of highly abundant proteins (sarcomeric, mitochondrial, chaperon, and extracellular matrix-related, etc.) that may be explained by long half-life of these proteins. We suggest that during short-term disuse the content of some regulatory (and usually low abundant) proteins such as cytokines, receptors, transporters, and transcription regulators is largely determined by their mRNA concentration. These mRNAs revealed in our work may serve as putative targets for future studies aimed at developing approaches for the prevention of muscle deconditioning induced by disuse.NEW & NOTEWORTHY Three-day dry immersion (a model of physical unloading) substantially changes the transcriptomic profile in the human soleus muscle, a muscle with predominantly slow-twitch fibers and strong postural function; despite this, we found no effect on the muscle proteome (highly abundant proteins). Dry immersion markedly reduces ADP-stimulated respiration; this decline is not accompanied by a decrease in the content of mitochondrial proteins/respiratory enzymes, indicating the disruption in regulation of cellular respiration.


Asunto(s)
Inmersión , Transcriptoma , Femenino , Humanos , Proteómica , Músculo Esquelético/metabolismo , Mitocondrias/metabolismo , Fibras Musculares de Contracción Lenta/metabolismo
4.
J Exp Zool B Mol Dev Evol ; 340(1): 34-55, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35438249

RESUMEN

Organization and functioning of immune system remain unevenly studied in different taxa of lophotrochozoan animals. We analyzed transcriptomic data on coelomocytes of the lugworm Arenicola marina (Linnaeus, 1758; Annelida, Polychaeta) to gain insights into the molecular mechanisms involved in polychaete immunity. Coelomocytes are specialized motile cells populating coelomic fluid of annelids, responsible for cellular defense reactions and providing humoral immune factors. The transcriptome was enriched with immune-related transcripts by challenging the cells in vitro with lipopolysaccharides of Escherichia coli and Zymosan from Saccharomyces cerevisiae. Our analysis revealed a multifaceted and complex internal defense system of the lugworm. A. marina possesses orthologs of proto-complement-like factors: six thioester-containing proteins, a complement-like receptor, and a MASP-related serine protease (MReM2). A. marina coelomocytes employ pattern-recognition receptors to detect pathogens and regulate immune responses. Among them, there are 18 Toll-like receptors and various putative lectin-like proteins with evolutionary conserved and taxa-specific domains. C-type lectins and a novel family of Gal-binding and CUB domains containing receptors were the most abundant in the transcriptome. The array of pore-forming proteins in the coelomocytes was surprisingly reduced compared to that of other invertebrate species. We characterized a set of conserved proteins metabolizing reactive oxygen species and nitric oxide and expanded the arsenal of potential antimicrobial peptides. Phenoloxidase activity in immune cells of lugworm is mediated only by laccase enzyme. The described repertoire of immune-associated molecules provides valuable candidates for further functional and comparative research on the immunity of annelids.


Asunto(s)
Anélidos , Poliquetos , Animales , Poliquetos/genética , Transcriptoma , Perfilación de la Expresión Génica , Invertebrados
5.
Hum Genomics ; 16(1): 24, 2022 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-35869513

RESUMEN

BACKGROUND: More than half of human protein-coding genes have an alternative transcription start site (TSS). We aimed to investigate the contribution of alternative TSSs to the acute-stress-induced transcriptome response in human tissue (skeletal muscle) using the cap analysis of gene expression approach. TSSs were examined at baseline and during recovery after acute stress (a cycling exercise). RESULTS: We identified 44,680 CAGE TSS clusters (including 3764 first defined) belonging to 12,268 genes and annotated for the first time 290 TSSs belonging to 163 genes. The transcriptome dynamically changes during the first hours after acute stress; the change in the expression of 10% of genes was associated with the activation of alternative TSSs, indicating differential TSSs usage. The majority of the alternative TSSs do not increase proteome complexity suggesting that the function of thousands of alternative TSSs is associated with the fine regulation of mRNA isoform expression from a gene due to the transcription factor-specific activation of various alternative TSSs. We identified individual muscle promoter regions for each TSS using muscle open chromatin data (ATAC-seq and DNase-seq). Then, using the positional weight matrix approach we predicted time course activation of "classic" transcription factors involved in response of skeletal muscle to contractile activity, as well as diversity of less/un-investigated factors. CONCLUSIONS: Transcriptome response induced by acute stress related to activation of the alternative TSSs indicates that differential TSSs usage is an essential mechanism of fine regulation of gene response to stress stimulus. A comprehensive resource of accurate TSSs and individual promoter regions for each TSS in muscle was created. This resource together with the positional weight matrix approach can be used to accurate prediction of TFs in any gene(s) of interest involved in the response to various stimuli, interventions or pathological conditions in human skeletal muscle.


Asunto(s)
Regulación de la Expresión Génica , Transcriptoma , Humanos , Músculo Esquelético , Regiones Promotoras Genéticas/genética , Sitio de Iniciación de la Transcripción , Transcriptoma/genética
6.
Int J Mol Sci ; 22(16)2021 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-34445356

RESUMEN

Ferritins comprise a conservative family of proteins found in all species and play an essential role in resistance to redox stress, immune response, and cell differentiation. Sponges (Porifera) are the oldest Metazoa that show unique plasticity and regenerative potential. Here, we characterize the ferritins of two cold-water sponges using proteomics, spectral microscopy, and bioinformatic analysis. The recently duplicated conservative HdF1a/b and atypical HdF2 genes were found in the Halisarca dujardini genome. Multiple related transcripts of HpF1 were identified in the Halichondria panicea transcriptome. Expression of HdF1a/b was much higher than that of HdF2 in all annual seasons and regulated differently during the sponge dissociation/reaggregation. The presence of the MRE and HRE motifs in the HdF1 and HdF2 promotor regions and the IRE motif in mRNAs of HdF1 and HpF indicates that sponge ferritins expression depends on the cellular iron and oxygen levels. The gel electrophoresis combined with specific staining and mass spectrometry confirmed the presence of ferric ions and ferritins in multi-subunit complexes. The 3D modeling predicts the iron-binding capacity of HdF1 and HpF1 at the ferroxidase center and the absence of iron-binding in atypical HdF2. Interestingly, atypical ferritins lacking iron-binding capacity were found in genomes of many invertebrate species. Their function deserves further research.


Asunto(s)
Ferritinas/genética , Poríferos/genética , Animales , Secuencia Conservada , Ferritinas/química , Ferritinas/metabolismo , Hierro/metabolismo , Redes y Vías Metabólicas/genética , Modelos Moleculares , Filogenia , Poríferos/clasificación , Poríferos/metabolismo , Dominios Proteicos/genética , Análisis de Secuencia de ADN , Transcriptoma/fisiología
7.
Biology (Basel) ; 10(6)2021 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-34203013

RESUMEN

The prevention of muscle atrophy carries with it clinical significance for the control of increased morbidity and mortality following physical inactivity. While major transcriptional events associated with muscle atrophy-recovery processes are the subject of active research on the gene level, the contribution of non-coding regulatory elements and alternative promoter usage is a major source for both the production of alternative protein products and new insights into the activity of transcription factors. We used the cap-analysis of gene expression (CAGE) to create a genome-wide atlas of promoter-level transcription in fast (m. EDL) and slow (m. soleus) muscles in rats that were subjected to hindlimb unloading and subsequent recovery. We found that the genetic regulation of the atrophy-recovery cycle in two types of muscle is mediated by different pathways, including a unique set of non-coding transcribed regulatory elements. We showed that the activation of "shadow" enhancers is tightly linked to specific stages of atrophy and recovery dynamics, with the largest number of specific regulatory elements being transcriptionally active in the muscles on the first day of recovery after a week of disuse. The developed comprehensive database of transcription of regulatory elements will further stimulate research on the gene regulation of muscle homeostasis in mammals.

8.
Genes (Basel) ; 11(12)2020 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-33256091

RESUMEN

Synthetic promoters are vital for genetic engineering-based strategies for crop improvement, but effective methodologies for their creation and systematic testing are lacking. We report here on the comparative analysis of the promoters pro-SmAMP1 and pro-SmAMP2 from Stellaria media ANTIMICROBIAL PEPTIDE1 (AMP1) and ANTIMICROBIAL PEPTIDE2 (AMP2). These promoters are more effective than the well-known Cauliflower mosaic virus 35S promoter. Although these promoters share about 94% identity, the pro-SmAMP1 promoter demonstrated stronger transient expression of a reporter gene in Agrobacterium infiltration of Nicotiana benthamiana leaves, while the pro-SmAMP2 promoter was more effective for the selection of transgenic tobacco (Nicotiana tabacum) cells when driving a selectable marker. Using the cap analysis of gene expression method, we detected no differences in the structure of the transcription start sites for either promoter in transgenic plants. For both promoters, we used fine-scale deletion analysis to identify 160 bp-long sequences that retain the unique properties of each promoter. With the use of chimeric promoters and directed mutagenesis, we demonstrated that the superiority of the pro-SmAMP1 promoter for Agrobacterium-mediated infiltration is caused by the proline-inducible ACTCAT cis-element strictly positioned relative to the TATA box in the core promoter. Surprisingly, the ACTCAT cis-element not only activated but also suppressed the efficiency of the pro-SmAMP1 promoter under proline stress. The absence of the ACTCAT cis-element and CAANNNNATC motif (negative regulator) in the pro-SmAMP2 promoter provided a more constitutive gene expression profile and better selection of transgenic cells on selective medium. We created a new synthetic promoter that enjoys high effectiveness both in transient expression and in selection of transgenic cells. Intact promoters with differing properties and high degrees of sequence identity may thus be used as a basis for the creation of new synthetic promoters for precise and coordinated gene expression.


Asunto(s)
Proteínas de Arabidopsis/genética , Carboxipeptidasas/genética , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/genética , Regiones Promotoras Genéticas/genética , Stellaria/genética , Transgenes/genética , Agrobacterium/genética , Secuencia de Bases , Caulimovirus/genética , Regulación de la Expresión Génica de las Plantas/genética , Genes Reporteros/genética , Hojas de la Planta/genética , Hojas de la Planta/virología , Nicotiana/genética , Nicotiana/virología , Sitio de Iniciación de la Transcripción/fisiología , Transcriptoma/genética
10.
PLoS One ; 15(2): e0228722, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32084159

RESUMEN

The ability to regulate oxygen consumption evolved in ancestral animals and is intrinsically linked to iron metabolism. The iron pathways have been intensively studied in mammals, whereas data on distant invertebrates are limited. Sea sponges represent the oldest animal phylum and have unique structural plasticity and capacity to reaggregate after complete dissociation. We studied iron metabolic factors and their expression during reaggregation in the White Sea cold-water sponges Halichondria panicea and Halisarca dujardini. De novo transcriptomes were assembled using RNA-Seq data, and evolutionary trends were analyzed with bioinformatic tools. Differential expression during reaggregation was studied for H. dujardini. Enzymes of the heme biosynthesis pathway and transport globins, neuroglobin (NGB) and androglobin (ADGB), were identified in sponges. The globins mutate at higher evolutionary rates than the heme synthesis enzymes. Highly conserved iron-regulatory protein 1 (IRP1) presumably interacts with the iron-responsive elements (IREs) found in mRNAs of ferritin (FTH1) and a putative transferrin receptor NAALAD2. The reaggregation process is accompanied by increased expression of IRP1, the antiapoptotic factor BCL2, the inflammation factor NFκB (p65), FTH1 and NGB, as well as by an increase in mitochondrial density. Our data indicate a complex mechanism of iron regulation in sponge structural plasticity and help to better understand general mechanisms of morphogenetic processes in multicellular species.


Asunto(s)
Hierro/metabolismo , Poríferos/metabolismo , Animales , Biología Computacional , Perfilación de la Expresión Génica , Proteínas Reguladoras del Hierro/genética , Proteínas Reguladoras del Hierro/metabolismo , Anotación de Secuencia Molecular , Filogenia , Poríferos/genética , RNA-Seq
11.
Sci Rep ; 10(1): 3514, 2020 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-32103137

RESUMEN

Regular low intensity aerobic exercise (aerobic training) provides effective protection against various metabolic disorders. Here, the roles played by transient transcriptome responses to acute exercise and by changes in baseline gene expression during up-regulation of protein content in human skeletal muscle were investigated after 2 months of aerobic training. Seven untrained males were involved in a 2 month aerobic cycling training program. Mass-spectrometry and RNA sequencing were used to evaluate proteome and transcriptome responses to training and acute exercise. We found that proteins with different functions are regulated differently at the transcriptional level; for example, a training-induced increase in the content of extracellular matrix-related proteins is regulated at the transcriptional level, while an increase in the content of mitochondrial proteins is not. An increase in the skeletal muscle content of several proteins (including mitochondrial proteins) was associated with increased protein stability, which is related to a chaperone-dependent mechanism and/or reduced regulation by proteolysis. These findings increase our understanding of the molecular mechanisms underlying regulation of protein expression in human skeletal muscle subjected to repeated stress (long term aerobic training) and may provide an opportunity to control the expression of specific proteins (e.g., extracellular matrix-related proteins, mitochondrial proteins) through physiological and/or pharmacological approaches.


Asunto(s)
Ejercicio Físico/fisiología , Regulación de la Expresión Génica/fisiología , Proteínas Musculares/biosíntesis , Músculo Esquelético/metabolismo , Estrés Fisiológico/fisiología , Transcriptoma/fisiología , Adulto , Ciclismo , Humanos , Masculino
12.
Am J Physiol Endocrinol Metab ; 316(4): E605-E614, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30779632

RESUMEN

Reduction in daily activity leads to dramatic metabolic disorders, while regular aerobic exercise training is effective for preventing this problem. The purpose of this study was to identify genes that are directly related to contractile activity in human skeletal muscle, regardless of the level of fitness. Transcriptome changes after the one-legged knee extension exercise in exercised and contralateral nonexercised vastus lateralis muscle of seven men were evaluated by RNA-seq. Transcriptome change at baseline after 2 mo of aerobic training (5/wk, 1 h/day) was evaluated as well. Postexercise changes in the transcriptome of exercised muscle were associated with different factors, including circadian oscillations. To reveal transcriptome response specific for endurance-like contractile activity, differentially expressed genes between exercised and nonexercised muscle were evaluated at 1 and 4 h after the one-legged exercise. The contractile activity-specific transcriptome responses were associated only with an increase in gene expression and were regulated mainly by CREB/ATF/AP1-, MYC/MAX-, and E2F-related transcription factors. Endurance training-induced changes (an increase or decrease) in the transcriptome at baseline were more pronounced than transcriptome responses specific for acute contractile activity. Changes after training were associated with widely different biological processes than those after acute exercise and were regulated by different transcription factors (IRF- and STAT-related factors). In conclusion, adaptation to regular exercise is associated not only with a transient (over several hours) increase in expression of many contractile activity-specific genes, but also with a pronounced change (an increase or decrease) in expression of a large number of genes under baseline conditions.


Asunto(s)
Entrenamiento Aeróbico , Ejercicio Físico , Proteínas Mitocondriales/genética , Contracción Muscular/genética , Músculo Cuádriceps/metabolismo , Factores de Transcripción/genética , Perfilación de la Expresión Génica , Humanos , Masculino , Músculo Esquelético/metabolismo , ARN Mensajero/metabolismo , Transcriptoma , Adulto Joven
13.
Biomed Res Int ; 2015: 890968, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26839888

RESUMEN

Opportunistic bacteria Staphylococcus aureus and Staphylococcus epidermidis often form rigid biofilms on tissues and inorganic surfaces. In the biofilm bacterial cells are embedded in a self-produced polysaccharide matrix and thereby are inaccessible to biocides, antibiotics, or host immune system. Here we show the antibacterial activity of newly synthesized cationic biocides, the quaternary ammonium, and bisphosphonium salts of pyridoxine (vitamin B6) against biofilm-embedded Staphylococci. The derivatives of 6-hydroxymethylpyridoxine were ineffective against biofilm-embedded S. aureus and S. epidermidis at concentrations up to 64 µg/mL, although all compounds tested exhibited low MICs (2 µg/mL) against planktonic cells. In contrast, the quaternary ammonium salt of pyridoxine (N,N-dimethyl-N-((2,2,8-trimethyl-4H-[1,3]dioxino[4,5-c]pyridin-5-yl)methyl)octadecan-1-aminium chloride (3)) demonstrated high biocidal activity against both planktonic and biofilm-embedded bacteria. Thus, the complete death of biofilm-embedded S. aureus and S. epidermidis cells was obtained at concentrations of 64 and 16 µg/mL, respectively. We suggest that the quaternary ammonium salts of pyridoxine are perspective to design new synthetic antibiotics and disinfectants for external application against biofilm-embedded cells.


Asunto(s)
Antibacterianos , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Piridoxina , Staphylococcus aureus/fisiología , Staphylococcus epidermidis/fisiología , Antibacterianos/química , Antibacterianos/farmacología , Piridoxina/análogos & derivados , Piridoxina/química , Piridoxina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...