Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Plant Sci ; 15: 1416216, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39166233

RESUMEN

High-quality seeds provide valuable nutrients to human society and ensure successful seedling establishment. During maturation, seeds accumulate storage compounds that are required to sustain seedling growth during germination. This review focuses on the epigenetic repression of the embryonic and seed maturation programs in seedlings. We begin with an extensive overview of mutants affecting these processes, illustrating the roles of core proteins and accessory components in the epigenetic machinery by comparing mutants at both phenotypic and molecular levels. We highlight how omics assays help uncover target-specific functional specialization and coordination among various epigenetic mechanisms. Furthermore, we provide an in-depth discussion on the Seed dormancy 4 (Sdr4) transcriptional corepressor family, comparing and contrasting their regulation of seed germination in the dicotyledonous species Arabidopsis and two monocotyledonous crops, rice and wheat. Finally, we compare the similarities in the activation and repression of the embryonic and seed maturation programs through a shared set of cis-regulatory elements and discuss the challenges in applying knowledge largely gained in model species to crops.

2.
Annu Rev Plant Biol ; 75(1): 459-488, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38657282

RESUMEN

Development is a chain reaction in which one event leads to another until the completion of a life cycle. Phase transitions are milestone events in the cycle of life. LEAFY COTYLEDON1 (LEC1), ABA INSENSITIVE3 (ABI3), FUSCA3 (FUS3), and LEC2 proteins, collectively known as LAFL, are master transcription factors (TFs) regulating seed and other developmental processes. Since the initial characterization of the LAFL genes, more than three decades of active research has generated tremendous amounts of knowledge about these TFs, whose roles in seed development and germination have been comprehensively reviewed. Recent advances in cell biology with genetic and genomic tools have allowed the characterization of the LAFL regulatory networks in previously challenging tissues at a higher throughput and resolution in reference species and crops. In this review, we provide a holistic perspective by integrating advances at the epigenetic, transcriptional, posttranscriptional, and protein levels to exemplify the spatiotemporal regulation of the LAFL networks in Arabidopsis seed development and phase transitions, and we briefly discuss the evolution of these TF networks.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Regulación de la Expresión Génica de las Plantas , Semillas , Factores de Transcripción , Semillas/crecimiento & desarrollo , Semillas/genética , Semillas/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/fisiología , Proteínas Potenciadoras de Unión a CCAAT
3.
Development ; 150(23)2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37997741

RESUMEN

Adaptation to dehydration stress requires plants to coordinate environmental and endogenous signals to inhibit stomatal proliferation and modulate their patterning. The stress hormone abscisic acid (ABA) induces stomatal closure and restricts stomatal lineage to promote stress tolerance. Here, we report that mutants with reduced ABA levels, xer-1, xer-2 and aba2-2, developed stomatal clusters. Similarly, the ABA signaling mutant snrk2.2/2.3/2.6, which lacks core ABA signaling kinases, also displayed stomatal clusters. Exposure to ABA or inhibition of ABA catabolism rescued the increased stomatal density and spacing defects observed in xer and aba2-2, suggesting that basal ABA is required for correct stomatal density and spacing. xer-1 and aba2-2 displayed reduced expression of EPF1 and EPF2, and enhanced expression of SPCH and MUTE. Furthermore, ABA suppressed elevated SPCH and MUTE expression in epf2-1 and epf1-1, and partially rescued epf2-1 stomatal index and epf1-1 clustering defects. Genetic analysis demonstrated that XER acts upstream of the EPF2-SPCH pathway to suppress stomatal proliferation, and in parallel with EPF1 to ensure correct stomatal spacing. These results show that basal ABA and functional ABA signaling are required to fine-tune stomatal density and patterning.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Estomas de Plantas/metabolismo , Transducción de Señal/genética , Proliferación Celular/genética , Regulación de la Expresión Génica de las Plantas
4.
Nat Plants ; 9(9): 1451-1467, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37563458

RESUMEN

In plants, restoring intercellular communication is required for cell activity in buds during the growth transition from slow to fast growth after dormancy release. However, the epigenetic regulation of this phenomenon is far from understood. Here we demonstrate that lily VERNALIZATION INSENSITIVE 3-LIKE 1 (LoVIL1) confers growth transition by mediating plasmodesmata opening via epigenetic repression of CALLOSE SYNTHASE 3 (LoCALS3). Moreover, we found that a novel transcription factor, NUCLEAR FACTOR Y, SUBUNIT A7 (LoNFYA7), is capable of recruiting the LoVIL1-Polycomb Repressive Complex 2 (PRC2) and enhancing H3K27me3 at the LoCALS3 locus by recognizing the CCAAT cis-element (Cce) of its promoter. The LoNFYA7-LoVIL1 module serves as a key player in orchestrating the phase transition from slow to fast growth in lily bulbs. These studies also indicate that LoVIL1 is a suitable marker for the bud-growth-transition trait following dormancy release in lily cultivars.


Asunto(s)
Epigénesis Genética , Lilium , Glucosiltransferasas/genética , Complejo Represivo Polycomb 2 , Regulación de la Expresión Génica de las Plantas
5.
Plant Physiol ; 191(4): 2489-2505, 2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-36659854

RESUMEN

Bud dormancy is an important trait in geophytes that largely affects their flowering process and vegetative growth after dormancy release. Compared with seed dormancy, the regulation of bud dormancy is still largely unclear. Abscisic acid (ABA) acts as the predominant hormone that regulates the whole dormancy process. In Gladiolus (Gladiolus hybridus), cold storage promotes corm dormancy release (CDR) by repressing ABA biosynthesis and signaling. However, the mechanisms governing ABA-related processes during CDR via epigenetics are poorly understood. Here, we show that class I BASIC PENTACYSTEINE2, (GhBPC2) directly binds to 9-CIS-EPOXYCAROTENOID DIOXYGENASE (GhNCED) and ABA INSENSITIVE5 (GhABI5) loci and down-regulates their expression to accelerate CDR. During CDR, histone modifications change dramatically at the GhBPC2-binding loci of GhABI5 with an increase in H3K27me3 and a decrease in H3K4me3. GhBPC2 is involved in both H3K27me3 and H3K4me3 and fine-tunes GhABI5 expression by recruiting polycomb repressive complex 2 (PRC2) and the chromatin remodeling factor EARLY BOLTING IN SHORT DAYS (GhEBS). These results show GhBPC2 epigenetically regulates CDR in Gladiolus by mediating GhABI5 expression with PRC2 and GhEBS.


Asunto(s)
Ácido Abscísico , Histonas , Histonas/metabolismo , Ácido Abscísico/metabolismo , Latencia en las Plantas/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transducción de Señal , Regulación de la Expresión Génica de las Plantas , Semillas/metabolismo , Germinación/fisiología
6.
Plant J ; 110(4): 961-977, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35199890

RESUMEN

Water stress can severely impact plant growth, productivity and yield. Consequently, plants have evolved various strategies through which they can respond and adapt to their environment. XERICO (XER) is a stress-responsive RING E3 ubiquitin ligase that modulates abscisic acid (ABA) levels and promotes drought tolerance when overexpressed. To better understand the biological role of XER in stress responses, we characterized a xer-1 hypomorphic mutant and a CRISPR/Cas9-induced xer-2 null mutant in Arabidopsis. Both xer mutant alleles exhibited increased drought sensitivity, supporting the results from overexpression studies. Furthermore, we discovered that both xer mutants have greater stomatal indices and that XER is expressed in epidermal cells, indicating that XER functions in the epidermis to repress stomatal development. To explore XER spatiotemporal and stress-dependent regulation, we conducted a yeast one-hybrid screen and found that CBF4/DREB1D associates with the XER 5' untranslated region (5'-UTR). We generated three cbf4 null mutants with CRISPR/Cas9 and showed that CBF4 negatively regulates ABA responses, promotes stomatal development and reduces drought tolerance, in contrast to the roles shown for XER. CBF4 is induced by ABA and osmotic stress, and localizes to the nucleus where it downregulates XER expression via the DRE element in its 5'-UTR. Lastly, genetic interaction studies confirmed that xer is epistatic to cbf4 in stomatal development and in ABA, osmotic and drought stress responses. We propose that the repression of XER by CBF4 functions to attenuate ABA signaling and stress responses to maintain a balance between plant growth and survival under adverse environmental conditions.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Ácido Abscísico/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Sequías , Regulación de la Expresión Génica de las Plantas , Estomas de Plantas/fisiología , Estrés Fisiológico/genética , Transactivadores/metabolismo
7.
Genes (Basel) ; 12(12)2021 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-34946886

RESUMEN

Abscisic acid (ABA) regulates various aspects of plant physiology, including promoting seed dormancy and adaptive responses to abiotic and biotic stresses. In addition, ABA plays an im-portant role in growth and development under non-stressed conditions. This review summarizes phenotypes of ABA biosynthesis and signaling mutants to clarify the roles of basal ABA in growth and development. The promotive and inhibitive actions of ABA in growth are characterized by stunted and enhanced growth of ABA-deficient and insensitive mutants, respectively. Growth regulation by ABA is both promotive and inhibitive, depending on the context, such as concentrations, tissues, and environmental conditions. Basal ABA regulates local growth including hyponastic growth, skotomorphogenesis and lateral root growth. At the cellular level, basal ABA is essential for proper chloroplast biogenesis, central metabolism, and expression of cell-cycle genes. Basal ABA also regulates epidermis development in the shoot, by inhibiting stomatal development, and deposition of hydrophobic polymers like a cuticular wax layer covering the leaf surface. In the root, basal ABA is involved in xylem differentiation and suberization of the endodermis. Hormone crosstalk plays key roles in growth and developmental processes regulated by ABA. Phenotypes of ABA-deficient and insensitive mutants indicate prominent functions of basal ABA in plant growth and development.


Asunto(s)
Ácido Abscísico , Desarrollo de la Planta/fisiología , Ácido Abscísico/metabolismo , Etilenos/metabolismo , Lípidos de la Membrana/metabolismo , Desarrollo de la Planta/genética , Estomas de Plantas/crecimiento & desarrollo , Ceras/metabolismo , Xilema/metabolismo
8.
BMC Plant Biol ; 21(1): 486, 2021 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-34696730

RESUMEN

BACKGROUND: The 26S proteasome, canonically composed of multi-subunit 19S regulatory (RP) and 20S core (CP) particles, is crucial for cellular proteostasis. Proteasomes are re-modeled, activated, or re-localized and this regulation is critical for plants in response to environmental stresses. The proteasome holoenzyme assembly and dissociation are therefore highly dynamic in vivo. However, the stoichiometric changes of the plant proteasomes and how proteasome associated chaperones vary under common abiotic stresses have not been systematically studied. RESULTS: Here, we studied the impact of abiotic stresses on proteasome structure, activity, and interacting partners in Arabidopsis thaliana. We analyzed available RNA expression data and observed that expressions of proteasome coding genes varied substantially under stresses; however, the protein levels of a few key subunits did not change significantly within 24 h. Instead, a switch in the predominant proteasome complex, from 26S to 20S, occurs under oxidative or salt stress. Oxidative stress also reduced the cellular ATP content and the association of HSP70-family proteins to the 20S proteasome, but enhanced the activity of cellular free form CP. Salt stress, on the other hand, did not affect cellular ATP level, but caused subtle changes in proteasome subunit composition and impacted bindings of assembly chaperones. Analyses of an array of T-DNA insertional mutant lines highlighted important roles for several putative assembly chaperones in seedling establishment and stress sensitivity. We also observed that knockout of PBAC1, one of the α-ring assembly chaperones, resulted in reduced germination and tearing of the seed coat following sterilization. CONCLUSIONS: Our study revealed an evolutionarily conserved mechanism of proteasome regulation during oxidative stress, involving dynamic regulation of the holoenzyme formation and associated regulatory proteins, and we also identified a novel role of the PBAC1 proteasome assembly chaperone in seed coat development.


Asunto(s)
Adaptación Fisiológica/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Holoenzimas/genética , Holoenzimas/metabolismo , Estrés Oxidativo , Complejo de la Endopetidasa Proteasomal/metabolismo , Estrés Salino , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Complejo de la Endopetidasa Proteasomal/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
9.
Genes (Basel) ; 12(10)2021 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-34681029

RESUMEN

Bud dormancy is an evolved trait that confers adaptation to harsh environments, and affects flower differentiation, crop yield and vegetative growth in perennials. ABA is a stress hormone and a major regulator of dormancy. Although the physiology of bud dormancy is complex, several advancements have been achieved in this field recently by using genetics, omics and bioinformatics methods. Here, we review the current knowledge on the role of ABA and environmental signals, as well as the interplay of other hormones and sucrose, in the regulation of this process. We also discuss emerging potential mechanisms in this physiological process, including epigenetic regulation.


Asunto(s)
Diferenciación Celular/genética , Epigénesis Genética/genética , Flores/genética , Latencia en las Plantas/genética , Aclimatación/genética , Productos Agrícolas/genética , Productos Agrícolas/crecimiento & desarrollo , Flores/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas/genética , Reguladores del Crecimiento de las Plantas/genética
10.
Front Plant Sci ; 11: 582208, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33133119

RESUMEN

Plants are continuously exposed to environmental stressors. They have thus evolved complex signaling pathways to govern responses to a variety of stimuli. The hormone abscisic acid (ABA) has been implicated in modulating both abiotic and biotic stress responses in plants. ABI5 Binding Proteins (AFPs) are a family of negative regulators of bZIP transcription factors of the AREB/ABF family, which promote ABA responses. AFP2 interacts with Snf1-Related protein Kinase 1 (SnRK1), which belongs to a highly conserved heterotrimeric kinase complex that is activated to re-establish energy homeostasis following stress. However, the role of this interaction is currently unknown. Here, we show that transient overexpression of Arabidopsis thaliana AFP2 in Nicotiana benthamiana leaves induces cell death (CD). Using truncated AFP2 constructs, we demonstrate that CD induction by AFP2 is dependent on the EAR domain. Co-expression of the catalytic subunit SnRK1α1, but not SnRK1α2, rescues AFP2-induced CD. Overexpression of SnRK1α1 has little effect on AFP2 protein level and does not affect AFP2 subcellular localization. Our results show that a high level of AFP2 is detrimental for cell function and that SnRK1α1 antagonizes AFP2-induced CD most likely through a mechanism that does not involve AFP2 protein degradation or a change in subcellular localization.

11.
Plant Cell ; 32(6): 1886-1904, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32265266

RESUMEN

Spatiotemporal regulation of gene expression is critical for proper developmental timing in plants and animals. The transcription factor FUSCA3 (FUS3) regulates developmental phase transitions by acting as a link between hormonal pathways in Arabidopsis (Arabidopsis thaliana). However, the mechanisms governing its spatiotemporal expression pattern are poorly understood. Here, we show that FUS3 is repressed in the ovule integuments and seed endosperm. FUS3 repression requires class I BASIC PENTACYSTEINE (BPC) proteins, which directly bind GA/CT cis-elements in FUS3 and restrict its expression pattern. During vegetative and reproductive development, FUS3 derepression in bpc1-1 bpc2 (bpc1/2) double mutant or misexpression in ProML1:FUS3 lines causes dwarf plants carrying defective flowers and aborted ovules. After fertilization, ectopic FUS3 expression in bpc1/2 endosperm or ProML1:FUS3 endosperm and endothelium increases endosperm nuclei proliferation and seed size, causing delayed or arrested embryo development. These phenotypes are rescued in bpc1/2 fus3-3 Finally, class I BPCs interact with FIS-PRC2 (FERTILIZATION-INDEPENDENT SEED-Polycomb Repressive Complex2), which represses FUS3 in the endosperm during early seed development. We propose that BPC1 and 2 promote the transition from reproductive to seed development by repressing FUS3 in ovule integuments. After fertilization, BPC1 and 2 and FIS-PRC2 repress FUS3 in the endosperm to coordinate early endosperm and embryo growth.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arabidopsis/fisiología , Regulación de la Expresión Génica de las Plantas/fisiología , Semillas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulación del Desarrollo de la Expresión Génica/genética , Regulación del Desarrollo de la Expresión Génica/fisiología , Regulación de la Expresión Génica de las Plantas/genética , Semillas/genética , Semillas/fisiología , Técnicas del Sistema de Dos Híbridos
12.
Commun Biol ; 3(1): 145, 2020 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-32218501

RESUMEN

Yeast Snf1 (Sucrose non-fermenting1), mammalian AMPK (5' AMP-activated protein kinase) and plant SnRK1 (Snf1-Related Kinase1) are conserved heterotrimeric kinase complexes that re-establish energy homeostasis following stress. The hormone abscisic acid (ABA) plays a crucial role in plant stress response. Activation of SnRK1 or ABA signaling results in overlapping transcriptional changes, suggesting these stress pathways share common targets. To investigate how SnRK1 and ABA interact during stress response in Arabidopsis thaliana, we screened the SnRK1 complex by yeast two-hybrid against a library of proteins encoded by 258 ABA-regulated genes. Here, we identify 125 SnRK1- interacting proteins (SnIPs). Network analysis indicates that a subset of SnIPs form signaling modules in response to abiotic stress. Functional studies show the involvement of SnRK1 and select SnIPs in abiotic stress responses. This targeted study uncovers the largest set of SnRK1 interactors, which can be used to further characterize SnRK1 role in plant survival under stress.


Asunto(s)
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/efectos de los fármacos , Plantas Modificadas Genéticamente/efectos de los fármacos , Mapas de Interacción de Proteínas , Proteínas Serina-Treonina Quinasas/metabolismo , Cloruro de Sodio/farmacología , Sorbitol/farmacología , Estrés Fisiológico , Arabidopsis/enzimología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulación Enzimológica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Secuenciación de Nucleótidos de Alto Rendimiento , Presión Osmótica , Plantas Modificadas Genéticamente/enzimología , Plantas Modificadas Genéticamente/genética , Proteínas Serina-Treonina Quinasas/genética , Estrés Salino , Transducción de Señal , Técnicas del Sistema de Dos Híbridos
13.
J Exp Bot ; 70(4): 1221-1237, 2019 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-30517656

RESUMEN

Corm dormancy is an important trait for breeding in many bulb flowers, including the most cultivated Gladiolus hybridus. Gladiolus corms are modified underground stems that function as storage organs and remain dormant to survive adverse environmental conditions. Unlike seed dormancy, not much is known about corm dormancy. Here, we characterize the mechanism of corm dormancy release (CDR) in Gladiolus. We identified an important ABA (abscisic acid) signaling regulator, GhPP2C1 (protein phosphatase 2C1), by transcriptome analysis of CDR. GhPP2C1 expression increased during CDR, and silencing of GhPP2C1 expression in dormant cormels delayed CDR. Furthermore, we show that GhPP2C1 expression is directly regulated by GhNAC83, which was identified by yeast one-hybrid library screening. In planta assays show that GhNAC83 is a negative regulator of GhPP2C1, and silencing of GhNAC83 promoted CDR. As expected, silencing of GhNAC83 decreased the ABA level, but also dramatically increased cytokinin (CK; zeatin) content in cormels. Binding assays demonstrate that GhNAC83 associates with the GhIPT (ISOPENTENYLTRANSFERASE) promoter and negatively regulates zeatin biosynthesis. Taken together, our results reveal that GhNAC83 promotes ABA signaling and synthesis, and inhibits CK biosynthesis pathways, thereby inhibiting CDR. These findings demonstrate that GhNAC83 regulates the ABA and CK pathways, and therefore controls corm dormancy.


Asunto(s)
Ácido Abscísico/metabolismo , Citocininas/biosíntesis , Iridaceae/fisiología , Latencia en las Plantas/genética , Proteínas de Plantas/genética , Tubérculos de la Planta/fisiología , Iridaceae/genética , Proteínas de Plantas/metabolismo , Transducción de Señal
14.
Plant Cell Physiol ; 60(1): 52-62, 2019 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-30192973

RESUMEN

Dormancy is one of the least understood phenomena in plant biology; however, bud/corm dormancy is an important economic trait in agricultural/horticultural breeding. In this study, we isolated an ABA biosynthesis gene, GhNCED, from the transcriptome database of corm dormancy release (CDR), and characterized its negative role in regulating CDR. To understand transcriptional regulation of GhNCED, yeast one-hybrid screening was conducted and GhTCP19 was identified and shown to regulate GhNCED expression directly. An in planta assay showed that GhTCP19 negatively regulates GhNCED expression. GhTCP19 is dramatically induced by exogenous cytokinins (CKs) and is induced during CDR. Silencing of GhTCP19 in dormant cormels delayed CDR, resulting in higher expression of GhNCED and ABA levels. Meanwhile, endogenous CK biosynthesis and signaling were inhibited in GhTCP19-silenced cormels. Taken together, our results reveal that GhTCP19 is a positive regulator of the CDR process by repressing expression of an ABA biosynthesis gene (GhNCED), promoting CK biosynthesis (GhIPT) and signal transduction (GhARR) as well as inducing cyclin genes. This study expands our knowledge on CDR which is mediated by TCP family members.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Iridaceae/genética , Iridaceae/fisiología , Latencia en las Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/metabolismo , Secuencia de Bases , Regulación hacia Abajo/genética , Silenciador del Gen , Modelos Biológicos , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/genética , Regiones Promotoras Genéticas/genética , Unión Proteica , Transcripción Genética , Transcriptoma/genética , Regulación hacia Arriba/genética
16.
J Exp Bot ; 68(15): 4219-4231, 2017 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-28922765

RESUMEN

The transcription factor FUSCA3 (FUS3) acts as a major regulator of seed maturation in Arabidopsis. FUS3 is phosphorylated by the SnRK1 catalytic subunit AKIN10/SnRK1α1, which belongs to a conserved eukaryotic kinase complex involved in energy homeostasis. Here we show that AKIN10 and FUS3 share overlapping expression patterns during embryogenesis, and that FUS3 is phosphorylated by AKIN10 in embryo cell extracts. To understand the role of FUS3 phosphorylation, we generated fus3-3 plants carrying FUS3 phosphorylation-null (FUS3S>A) and phosphorylation-mimic (FUS3S>D) variants. While FUS3S>A and FUS3S>D rescued all the fus3-3 seed maturation defects, FUS3S>A showed reduced transcriptional activity and enhanced fus3-3 previously uncharacterized phenotypes. FUS3S>A embryos displayed increased seed abortion due to maternal FUS3S>A and delayed embryo development, which correlated with a strong decrease in seed yield (~50%). Accordingly, the akin10 and akin11 mutants displayed a frequency of seed abortion similar to fus3-3. When plants were grown at elevated temperature, most phenotypes were exaggerated in FUS3S>A plants, and progeny seedlings overall grew poorly, suggesting that phosphorylation of FUS3 plays an important role during early embryogenesis and under heat stress. Collectively, these results suggest that FUS3 phosphorylation and SnRK1 are required for embryogenesis and integration of environmental cues to ensure the survival of the progeny.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Calor , Proteínas Serina-Treonina Quinasas/genética , Factores de Transcripción/genética , Arabidopsis/embriología , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/metabolismo , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo , Plantones/crecimiento & desarrollo , Semillas/crecimiento & desarrollo , Factores de Transcripción/metabolismo
17.
J Exp Bot ; 68(7): 1555-1567, 2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-28369580

RESUMEN

FUSCA3 (FUS3) is a short-lived B3-domain transcription factor that regulates seed development and phase transitions in Arabidopsis thaliana. The mechanisms controlling FUS3 levels are currently poorly understood. Here we show that FUS3 interacts with the RING E3 ligase ABI3-INTERACTING PROTEIN2 (AIP2). AIP2-green fluorescent protein (GFP) is preferentially expressed in the protoderm during early embryogenesis, similarly to FUS3, suggesting that their interaction is biologically relevant. FUS3 degradation is delayed in the aip2-1 mutant and FUS3-GFP fluorescence is increased in aip2-1, but only during mid-embryogenesis, suggesting that FUS3 is negatively regulated by AIP2 at a specific time during embryogenesis. aip2-1 shows delayed flowering and therefore also functions post-embryonically to regulate developmental phase transitions. Plants overexpressing FUS3 post-embryonically in the L1 layer (ML1p:FUS3) show late flowering and other developmental phenotypes that can be rescued by ML1p:AIP2, further supporting a negative role for AIP2 in FUS3 accumulation. However, additional factors regulate FUS3 levels during embryogenesis, as ML1:AIP2 seeds do not resemble fus3-3. Lastly, targeted expression of a RING-inactive AIP2 variant to the protoderm/L1 layer causes FUS3 and ABI3 overexpression phenotypes and defects in cotyledon development. Taken together, these results indicate that AIP2 targets FUS3 for degradation and plays a role in cotyledon development and flowering time in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteínas Portadoras/genética , Cotiledón/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Factores de Transcripción/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/metabolismo , Proteínas Portadoras/metabolismo , Cotiledón/genética , Factores de Transcripción/metabolismo
18.
Plant Signal Behav ; 11(11): e1247137, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27791466

RESUMEN

During seed imbibition at supra-optimal temperature, an increase in the abscisic acid (ABA)/gibberellin (GA) ratio imposes secondary dormancy to prevent germination (thermoinhibition). FUSCA3 (FUS3), a positive regulator of seed dormancy, accumulates in seeds imbibed at high temperature and increases ABA levels to inhibit germination. Recently, we showed that ABA inhibits FUS3 degradation at high temperature, and that ABA and high temperature also inhibit the ubiquitin-proteasome system, by dampening both proteasome activity and protein polyubiquitination. Here, we investigated the role of ABA signaling components and the ABA antagonizing hormone, GA, in the regulation of FUS3 levels. We show that the ABA receptor mutant, pyl1-1, is less sensitive to ABA and thermoinhibition. In this mutant background, FUS3 degradation in vitro is faster. Similarly, GA alleviates thermoinhibition and also increases FUS3 degradation. These results indicate that inhibition of FUS3 degradation at high temperature is dependent on a high ABA/GA ratio and a functional ABA signaling pathway. Thus, FUS3 constitutes an important node in ABA-GA crosstalk during germination at supra-optimal temperature.


Asunto(s)
Ácido Abscísico/metabolismo , Giberelinas/metabolismo , Factores de Transcripción/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas/fisiología , Germinación/fisiología , Latencia en las Plantas/fisiología , Reguladores del Crecimiento de las Plantas/metabolismo , Semillas/metabolismo , Transducción de Señal/fisiología , Temperatura
19.
Plant J ; 88(5): 749-761, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27496613

RESUMEN

During germination, endogenous and environmental factors trigger changes in the transcriptome, translatome and proteome to break dormancy. In Arabidopsis thaliana, the ubiquitin proteasome system (UPS) degrades proteins that promote dormancy to allow germination. While research on the UPS has focused on the identification of proteasomal substrates, little information is known about the regulation of its activity. Here we characterized the activity of the UPS during dormancy release and maintenance by monitoring protein ubiquitination and degradation of two proteasomal substrates: Suc-LLVY-AMC, a well characterized synthetic substrate, and FUSCA3 (FUS3), a dormancy-promoting transcription factor degraded by the 26S proteasome. Our data indicate that proteasome activity and protein ubiquitination increase during imbibition at optimal temperature (21°C), and are required for seed germination. However, abscisic acid (ABA) and supraoptimal temperature (32°C) inhibit germination by dampening both protein ubiquitination and proteasome activity. Inhibition of UPS function by high temperature is reduced by the ABA biosynthesis inhibitor, fluridone, and in ABA biosynthetic mutants, suggesting that it is ABA dependent. Accordingly, inhibition of FUS3 degradation at 32°C is also dependent on ABA. Native gels show that inhibition of proteasome activity is caused by interference with the 26S/30S ratio as well as free 19S and 20S levels, impacting the proteasome degradation cycle. Transfer experiments show that ABA-mediated inhibition of proteasome activity at 21°C is restricted to the first 2 days of germination, a time window corresponding to seed sensitivity to environmental and ABA-mediated growth inhibition. Our data show that ABA and high temperature inhibit germination under unfavourable growth conditions by repressing the UPS.


Asunto(s)
Ácido Abscísico/metabolismo , Arabidopsis/metabolismo , Germinación/fisiología , Complejo de la Endopetidasa Proteasomal/metabolismo , Ubiquitina/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Temperatura , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
20.
Essays Biochem ; 58: 151-64, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26374893

RESUMEN

Hormones are chemical substances that can affect many cellular and developmental processes at low concentrations. Plant hormones co-ordinate growth and development at almost all stages of the plant's life cycle by integrating endogenous signals and environmental cues. Much debate in hormone biology revolves around specificity and redundancy of hormone signalling. Genetic and molecular studies have shown that these small molecules can affect a given process through a signalling pathway that is specific for each hormone. However, classical physiological and genetic studies have also demonstrated that the same biological process can be regulated by many hormones through independent pathways (co-regulation) or shared pathways (cross-talk or cross-regulation). Interactions between hormone pathways are spatiotemporally controlled and thus can vary depending on the stage of development or the organ being considered. In this chapter we discuss interactions between abscisic acid, gibberellic acid and ethylene in the regulation of seed germination as an example of hormone cross-talk. We also consider hormone interactions in response to environmental signals, in particular light and temperature. We focus our discussion on the model plant Arabidopsis thaliana.


Asunto(s)
Germinación , Reguladores del Crecimiento de las Plantas/metabolismo , Semillas/crecimiento & desarrollo , Etilenos/biosíntesis , Luz , Transducción de Señal , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA