Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Int J Mol Sci ; 25(2)2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38256054

RESUMEN

Caveolae constitute membrane microdomains where receptors and ion channels functionally interact. Caveolin-3 (cav-3) is the key structural component of muscular caveolae. Mutations in CAV3 lead to caveolinopathies, which result in both muscular dystrophies and cardiac diseases. In cardiomyocytes, cav-1 participates with cav-3 to form caveolae; skeletal myotubes and adult skeletal fibers do not express cav-1. In the heart, the absence of cardiac alterations in the majority of cases may depend on a conserved organization of caveolae thanks to the expression of cav-1. We decided to focus on three specific cav-3 mutations (Δ62-64YTT; T78K and W101C) found in heterozygosis in patients suffering from skeletal muscle disorders. We overexpressed both the WT and mutated cav-3 together with ion channels interacting with and modulated by cav-3. Patch-clamp analysis conducted in caveolin-free cells (MEF-KO), revealed that the T78K mutant is dominant negative, causing its intracellular retention together with cav-3 WT, and inducing a significant reduction in current densities of all three ion channels tested. The other cav-3 mutations did not cause significant alterations. Mathematical modelling of the effects of cav-3 T78K would impair repolarization to levels incompatible with life. For this reason, we decided to compare the effects of this mutation in other cell lines that endogenously express cav-1 (MEF-STO and CHO cells) and to modulate cav-1 expression with an shRNA approach. In these systems, the membrane localization of cav-3 T78K was rescued in the presence of cav-1, and the current densities of hHCN4, hKv1.5 and hKir2.1 were also rescued. These results constitute the first evidence of a compensatory role of cav-1 in the heart, justifying the reduced susceptibility of this organ to caveolinopathies.


Asunto(s)
Caveolina 1 , Caveolina 3 , Adulto , Animales , Cricetinae , Humanos , Caveolina 1/genética , Caveolina 3/genética , Cricetulus , Mutación , Células CHO , Canales Iónicos
2.
Lab Invest ; 103(3): 100037, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36925196

RESUMEN

Sarcoglycanopathies, limb-girdle muscular dystrophies (LGMD) caused by genetic loss-of-function of the membrane proteins sarcoglycans (SGs), are characterized by progressive degeneration of skeletal muscle. In these disorders, muscle necrosis is associated with immune-mediated damage, whose triggering and perpetuating molecular mechanisms are not fully elucidated yet. Extracellular adenosine triphosphate (eATP) seems to represent a crucial factor, with eATP activating purinergic receptors. Indeed, in vivo blockade of the eATP/P2X7 purinergic pathway ameliorated muscle disease progression. P2X7 inhibition improved the dystrophic process by restraining the activity of P2X7 receptors on immune cells. Whether P2X7 blockade can display a direct action on muscle cells is not known yet. In this study, we investigated eATP effects in primary cultures of myoblasts isolated from patients with LGMDR3 (α-sarcoglycanopathy) and in immortalized cells isolated from a patient with LGMDR5 (γ-sarcoglycanopathy). Our results demonstrated that, owing to a reduced ecto-ATPase activity and/or an enhanced release of ATP, patient cells are exposed to increased juxtamembrane concentrations of eATP and display a higher susceptivity to eATP signals. The purinoceptor P2Y2, which proved to be overexpressed in patient cells, was identified as a pivotal receptor responsible for the enhanced ATP-induced or UTP-induced Ca2+ increase in affected myoblasts. Moreover, P2Y2 stimulation in LDMDR3 muscle cells induced chemotaxis of immune cells and release of interleukin-8. In conclusion, a higher eATP concentration and sensitivity in primary human muscle cells carrying different α-SG or γ-SG loss-of-function mutations indicate that eATP/P2Y2 is an enhanced signaling axis in cells from patients with α-/γ-sarcoglycanopathy. Understanding the basis of the innate immune-mediated damage associated with the dystrophic process may be critical in overcoming the immunologic hurdles associated with emerging gene therapies for these disorders.


Asunto(s)
Adenosina Trifosfato , Sarcoglicanopatías , Humanos , Adenosina Trifosfato/metabolismo , Músculo Esquelético/metabolismo , Sarcoglicanopatías/metabolismo , Transducción de Señal , Receptores Purinérgicos P2Y2
3.
Front Physiol ; 14: 1057592, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36776973

RESUMEN

Objective: In the field of non-treatable muscular dystrophies, promising new gene and cell therapies are being developed and are entering clinical trials. Objective assessment of therapeutic effects on motor function is mandatory for economical and ethical reasons. Main shortcomings of existing measurements are discontinuous data collection in artificial settings as well as a major focus on walking, neglecting the importance of hand and arm movements for patients' independence. We aimed to create a digital tool to measure muscle function with an emphasis on upper limb motility. Methods: suMus provides a custom-made App running on smartwatches. Movement data are sent to the backend of a suMus web-based platform, from which they can be extracted as CSV data. Fifty patients with neuromuscular diseases assessed the pool of suMus activities in a first orientation phase. suMus performance was hence validated in four upper extremity exercises based on the feedback of the orientation phase. We monitored the arm metrics in a cohort of healthy volunteers using the suMus application, while completing each exercise at low frequency in a metabolic chamber. Collected movement data encompassed average acceleration, rotation rate as well as activity counts. Spearman rank tests correlated movement data with energy expenditure from the metabolic chamber. Results: Our novel application "suMus," sum of muscle activity, collects muscle movement data plus Patient-Related-Outcome-Measures, sends real-time feedback to patients and caregivers and provides, while ensuring data protection, a long-term follow-up of disease course. The application was well received from the patients during the orientation phase. In our pilot study, energy expenditure did not differ between overnight fasted and non-fasted participants. Acceleration ranged from 1.7 ± 0.7 to 3.2 ± 0.5 m/sec2 with rotation rates between 0.9 ± 0.5 and 2.0 ± 3.4 rad/sec. Acceleration and rotation rate as well as derived activity counts correlated with energy expenditure values measured in the metabolic chamber for one exercise (r = 0.58, p < 0.03). Conclusion: In the analysis of slow frequency movements of upper extremities, the integration of the suMus application with smartwatch sensors characterized motion parameters, thus supporting a use in clinical trial outcome measures. Alternative methodologies need to complement indirect calorimetry in validating accelerometer-derived energy expenditure data.

4.
EMBO Mol Med ; 15(3): e16225, 2023 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-36594243

RESUMEN

Nothing is known about the potential implication of gut microbiota in skeletal muscle disorders. Here, we provide evidence that fecal microbiota composition along with circulating levels of short-chain fatty acids (SCFAs) and related metabolites are altered in the mdx mouse model of Duchenne muscular dystrophy (DMD) compared with healthy controls. Supplementation with sodium butyrate (NaB) in mdx mice rescued muscle strength and autophagy, and prevented inflammation associated with excessive endocannabinoid signaling at CB1 receptors to the same extent as deflazacort (DFZ), the standard palliative care for DMD. In LPS-stimulated C2C12 myoblasts, NaB reduces inflammation, promotes autophagy, and prevents dysregulation of microRNAs targeting the endocannabinoid CB1 receptor gene, in a manner depending on the activation of GPR109A and PPARγ receptors. In sum, we propose a novel disease-modifying approach in DMD that may have benefits also in other muscular dystrophies.


Asunto(s)
Distrofia Muscular de Duchenne , Animales , Ratones , Autofagia , Disbiosis , Endocannabinoides/metabolismo , Inflamación/metabolismo , Ratones Endogámicos mdx , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/tratamiento farmacológico , Distrofia Muscular de Duchenne/genética , Intestinos
5.
J Neuromuscul Dis ; 10(2): 173-184, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36373291

RESUMEN

BACKGROUND: Telemedicine (TM) contributes to bridge the gap between healthcare facilities and patients' homes with neuromuscular disease (NMD) because of mobility issues. However, its deployment is limited due to difficulties evaluating subtle neurological signs such as mild weakness or sensory deficits. The COVID-19 pandemic has disrupted healthcare delivery worldwide, necessitating rapid measures implementation by health care providers (HCPs) to protect patients from acquiring SARS-CoV-2 while maintaining the best care and treatment. OBJECTIVES: Given the challenges faced by remote healthcare assistance of NMD patients, we aim to evaluate the use of TM in NMD during the COVID-19 pandemic. METHODS: Based on the Model for Assessment-of-Telemedicine-Applications (MAST), we conducted a survey amongst clinicians of the ERN EURO NMD (European-Reference-Network-for-Rare-Neuromuscular-Diseases). RESULTS: Based on 42 responses over 76 expected ones, our results show that the COVID-19 pandemic significantly increased the number of HCPs using TM (from 60% to 100%). The TM types most used during the COVID-19 period are teleconsultation and consultation by phone, particularly in the context of symptoms worsening in NMD patients with COVID-19 infection. Most European HCPs were satisfied when using TM but as a complementary option to physical consultations. Many responses addressed the issue of technical aspects needing improvement, particularly for elderly patients who need caregivers' assistance for accessing the TM platform. CONCLUSIONS: TM has been essential during COVID-19, but its use still presents some limitations for NMD patients with cognitive deficits or for first-time diagnosis. Thus, TM should be used as complement to, rather than substitute, for face-to-face consultations.


Asunto(s)
COVID-19 , Enfermedades Neuromusculares , Telemedicina , Humanos , Anciano , SARS-CoV-2 , Pandemias , Telemedicina/métodos
6.
Pharmaceuticals (Basel) ; 15(1)2022 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-35056146

RESUMEN

Limb-girdle muscular dystrophy R3, a rare genetic disorder affecting the limb proximal muscles, is caused by mutations in the α-sarcoglycan gene (Sgca) and aggravated by an immune-mediated damage, finely modulated by the extracellular (e)ATP/purinoceptors axis. Currently, no specific drugs are available. The aim of this study was to evaluate the therapeutic effectiveness of a selective P2X7 purinoreceptor antagonist, A438079. Sgca knockout mice were treated with A438079 every two days at 3 mg/Kg for 24 weeks. The P2X7 antagonist improved clinical parameters by ameliorating mice motor function and decreasing serum creatine kinase levels. Histological analysis of muscle morphology indicated a significant reduction of the percentage of central nuclei, of fiber size variability and of the extent of local fibrosis and inflammation. A cytometric characterization of the muscle inflammatory infiltrates showed that A438079 significantly decreased innate immune cells and upregulated the immunosuppressive regulatory T cell subpopulation. In α-sarcoglycan null mice, the selective P2X7 antagonist A438079 has been shown to be effective to counteract the progression of the dystrophic phenotype and to reduce the inflammatory response. P2X7 antagonism via selective inhibitors could be included in the immunosuppressant strategies aimed to dampen the basal immune-mediated damage and to favor a better engraftment of gene-cell therapies.

7.
Internist (Berl) ; 62(8): 827-840, 2021 Aug.
Artículo en Alemán | MEDLINE | ID: mdl-34143250

RESUMEN

Statins are among the most frequently prescribed drugs in Germany. Their benefits in lowering cardiovascular risk are beyond dispute. Nevertheless, many patients complain of side effects from statin therapy, including statin-associated muscle symptoms (SAMS) in particular. Despite their relative frequency, it is difficult to objectively diagnose them, as the time until appearance of first symptoms, the nature of the complaints and the severity of muscle problems vary widely. This narrative review summarizes the causes of SAMS as well as new possibilities regarding their diagnosis and therapy.


Asunto(s)
Inhibidores de Hidroximetilglutaril-CoA Reductasas , Alemania , Humanos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/efectos adversos , Músculos
8.
Int J Mol Sci ; 21(17)2020 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-32825102

RESUMEN

In muscle ATP is primarily known for its function as an energy source and as a mediator of the "excitation-transcription" process, which guarantees muscle plasticity in response to environmental stimuli. When quickly released in massive concentrations in the extracellular space as in presence of muscle membrane damage, ATP acts as a damage-associated molecular pattern molecule (DAMP). In experimental murine models of muscular dystrophies characterized by membrane instability, blockade of eATP/P2X7 receptor (R) purinergic signaling delayed the progression of the dystrophic phenotype dampening the local inflammatory response and inducing Foxp3+ T Regulatory lymphocytes. These discoveries highlighted the relevance of ATP as a harbinger of immune-tissue damage in muscular genetic diseases. Given the interactions between the immune system and muscle regeneration, the comprehension of ATP/purinerigic pathway articulated organization in muscle cells has become of extreme interest. This review explores ATP release, metabolism, feedback control and cross-talk with members of muscle inflammasome in the context of muscular dystrophies.


Asunto(s)
Adenosina Trifosfato/metabolismo , Inflamasomas/metabolismo , Distrofias Musculares/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Animales , Humanos , Músculo Esquelético/metabolismo , Transducción de Señal
9.
Am J Pathol ; 189(2): 354-369, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30448410

RESUMEN

In muscular dystrophies, muscle membrane fragility results in a tissue-specific increase of danger-associated molecular pattern molecules (DAMPs) and infiltration of inflammatory cells. The DAMP extracellular ATP (eATP) released by dying myofibers steadily activates muscle and immune purinergic receptors exerting dual negative effects: a direct damage linked to altered intracellular calcium homeostasis in muscle cells and an indirect toxicity through the triggering of the immune response and inhibition of regulatory T cells. Accordingly, pharmacologic and genetic inhibition of eATP signaling improves the phenotype in models of chronic inflammatory diseases. In α-sarcoglycanopathy, eATP effects may be further amplified because α-sarcoglycan extracellular domain binds eATP and displays an ecto-ATPase activity, thus controlling eATP concentration at the cell surface and attenuating the magnitude and/or the duration of eATP-induced signals. Herein, we show that in vivo blockade of the eATP/P2X purinergic pathway by a broad-spectrum P2X receptor-antagonist delayed the progression of the dystrophic phenotype in α-sarcoglycan-null mice. eATP blockade dampened the muscular inflammatory response and enhanced the recruitment of forkhead box protein P3-positive immunosuppressive regulatory CD4+ T cells. The improvement of the inflammatory features was associated with increased strength, reduced necrosis, and limited expression of profibrotic factors, suggesting that pharmacologic purinergic antagonism, altering the innate and adaptive immune component in muscle infiltrates, might provide a therapeutic approach to slow disease progression in α-sarcoglycanopathy.


Asunto(s)
Adenosina Trifosfato/inmunología , Distrofia Muscular Animal , Miofibrillas , Sarcoglicanos/deficiencia , Linfocitos T Reguladores , Adenosina Trifosfato/genética , Animales , Calcio/inmunología , Enfermedad Crónica , Inflamación/genética , Inflamación/inmunología , Inflamación/patología , Ratones , Ratones Noqueados , Distrofia Muscular Animal/genética , Distrofia Muscular Animal/inmunología , Distrofia Muscular Animal/patología , Miofibrillas/inmunología , Miofibrillas/patología , Receptores Purinérgicos P2X/genética , Receptores Purinérgicos P2X/inmunología , Sarcoglicanos/inmunología , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/patología
10.
Br J Pharmacol ; 176(10): 1568-1584, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30074247

RESUMEN

BACKGROUND AND PURPOSE: Duchenne muscular dystrophy (DMD), caused by dystrophin deficiency, results in chronic inflammation and irreversible skeletal muscle degeneration. Moreover, the associated impairment of autophagy greatly contributes to the aggravation of muscle damage. We explored the possibility of using non-euphoric compounds present in Cannabis sativa, cannabidiol (CBD), cannabidivarin (CBDV) and tetrahydrocannabidivarin (THCV), to reduce inflammation, restore functional autophagy and positively enhance muscle function in vivo. EXPERIMENTAL APPROACH: Using quantitative PCR, western blots and [Ca2+ ]i measurements, we explored the effects of CBD and CBDV on the differentiation of both murine and human skeletal muscle cells as well as their potential interaction with TRP channels. Male dystrophic mdx mice were injected i.p. with CBD or CBDV at different stages of the disease. After treatment, locomotor tests and biochemical analyses were used to evaluate their effects on inflammation and autophagy. KEY RESULTS: CBD and CBDV promoted the differentiation of murine C2C12 myoblast cells into myotubes by increasing [Ca2+ ]i mostly via TRPV1 activation, an effect that undergoes rapid desensitization. In primary satellite cells and myoblasts isolated from healthy and/or DMD donors, not only CBD and CBDV but also THCV promoted myotube formation, in this case, mostly via TRPA1 activation. In mdx mice, CBD (60 mg·kg-1 ) and CBDV (60 mg·kg-1 ) prevented the loss of locomotor activity, reduced inflammation and restored autophagy. CONCLUSION AND IMPLICATIONS: We provide new insights into plant cannabinoid interactions with TRP channels in skeletal muscle, highlighting a potential opportunity for novel co-adjuvant therapies to prevent muscle degeneration in DMD patients. LINKED ARTICLES: This article is part of a themed section on 8th European Workshop on Cannabinoid Research. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.10/issuetoc.


Asunto(s)
Cannabidiol/farmacología , Cannabinoides/farmacología , Cannabis/química , Dronabinol/análogos & derivados , Músculo Esquelético/efectos de los fármacos , Distrofia Muscular de Duchenne/tratamiento farmacológico , Mioblastos/efectos de los fármacos , Animales , Calcio/metabolismo , Cannabidiol/aislamiento & purificación , Cannabinoides/aislamiento & purificación , Diferenciación Celular/efectos de los fármacos , Línea Celular , Relación Dosis-Respuesta a Droga , Dronabinol/aislamiento & purificación , Dronabinol/farmacología , Distrofina/genética , Endocannabinoides/metabolismo , Humanos , Masculino , Ratones , Fuerza Muscular/efectos de los fármacos , Fuerza Muscular/genética , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/metabolismo , Mioblastos/metabolismo , Canales de Potencial de Receptor Transitorio/metabolismo
11.
Nat Commun ; 9(1): 3950, 2018 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-30262909

RESUMEN

The endocannabinoid system refers to a widespread signaling system and its alteration is implicated in a growing number of human diseases. However, the potential role of endocannabinoids in skeletal muscle disorders remains unknown. Here we report the role of the endocannabinoid CB1 receptors in Duchenne's muscular dystrophy. In murine and human models, CB1 transcripts show the highest degree of expression at disease onset, and then decline overtime. Similar changes are observed for PAX7, a key regulator of muscle stem cells. Bioinformatics and biochemical analysis reveal that PAX7 binds and upregulates the CB1 gene in dystrophic more than in healthy muscles. Rimonabant, an antagonist of CB1, promotes human satellite cell differentiation in vitro, increases the number of regenerated myofibers, and prevents locomotor impairment in dystrophic mice. In conclusion, our study uncovers a PAX7-CB1 cross talk potentially exacerbating DMD and highlights the role of CB1 receptors as target for potential therapies.


Asunto(s)
Distrofia Muscular de Duchenne/genética , Receptor Cannabinoide CB1/genética , Animales , Ácidos Araquidónicos/metabolismo , Secuencia de Bases , Biomarcadores/metabolismo , Diglicéridos/metabolismo , Endocannabinoides/metabolismo , Glicéridos/metabolismo , Células HEK293 , Humanos , Luciferasas/metabolismo , Ratones Endogámicos C57BL , Ratones Endogámicos mdx , Actividad Motora/efectos de los fármacos , Células Musculares/efectos de los fármacos , Células Musculares/metabolismo , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Distrofia Muscular de Duchenne/patología , Distrofia Muscular de Duchenne/fisiopatología , Factor de Transcripción PAX7/genética , Factor de Transcripción PAX7/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptor Cannabinoide CB1/metabolismo , Regeneración/efectos de los fármacos , Rimonabant/farmacología , Transcripción Genética/efectos de los fármacos
12.
Acta Neuropathol Commun ; 6(1): 27, 2018 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-29642926

RESUMEN

Duchenne muscular dystrophy (DMD) is the most common inherited muscle disorder that causes severe disability and death of young men. This disease is characterized by progressive muscle degeneration aggravated by sterile inflammation and is also associated with cognitive impairment and low bone density. Given that no current treatment can improve the long-term outcome, approaches with a strong translational potential are urgently needed. Duchenne muscular dystrophy (DMD) alters P2RX7 signaling in both muscle and inflammatory cells and inhibition of this receptor resulted in a significant attenuation of muscle and non-muscle symptoms in DMDmdx mouse model. As P2RX7 is an attractive target in a range of human diseases, specific antagonists have been developed. Yet, these will require lengthy safety testing in the pediatric population of Duchenne muscular dystrophy (DMD) patients. In contrast, Nucleoside Reverse Transcriptase Inhibitors (NRTIs) can act as P2RX7 antagonists and are drugs with an established safety record, including in children. We demonstrate here that AZT (Zidovudine) inhibits P2RX7 functions acting via the same allosteric site as other antagonists. Moreover, short-term AZT treatment at the peak of disease in DMDmdx mice attenuated the phenotype without any detectable side effects. Recovery was evident in the key parameters such as reduced sarcolemma permeability confirmed by lower serum creatine kinase levels and IgG influx into myofibres, decreased inflammatory cell numbers and inflammation markers in leg and heart muscles of treated mice. Moreover, this short-term therapy had some positive impact on muscle strength in vivo and no detrimental effect on mitochondria, which is the main side-effect of Nucleoside Reverse Transcriptase Inhibitors (NRTIs). Given these results, we postulate that AZT could be quickly re-purposed for the treatment of this highly debilitating and lethal disease. This approach is not constrained by causative DMD mutations and may be effective in alleviating both muscle and non-muscle abnormalities.


Asunto(s)
Antimetabolitos/uso terapéutico , Distrofia Muscular de Duchenne/patología , Distrofia Muscular de Duchenne/terapia , Receptores Purinérgicos P2X7/metabolismo , Zidovudina/uso terapéutico , Adenosina Trifosfato/análogos & derivados , Adenosina Trifosfato/farmacología , Animales , Antígenos CD/metabolismo , Antígenos de Diferenciación Mielomonocítica/metabolismo , Calcio/metabolismo , Células Cultivadas , Colágeno Tipo IV/metabolismo , Creatina Quinasa/sangre , Modelos Animales de Enfermedad , Masculino , Ratones , Ratones Endogámicos mdx , Ratones Transgénicos , Modelos Moleculares , Fuerza Muscular/efectos de los fármacos , Músculos/efectos de los fármacos , Músculos/metabolismo , Distrofia Muscular de Duchenne/sangre , Distrofia Muscular de Duchenne/genética , Mioblastos/efectos de los fármacos
13.
J Hum Genet ; 63(6): 761-764, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29556034

RESUMEN

We present a 13-year-old patient with persistent increase of serum Creatine Kinase (CK) and myalgia after exertion. Skeletal muscle biopsy showed marked reduction of dystrophin expression leading to genetic analysis of DMD gene by MLPA, which detected a single deletion of exon 78. To the best of our knowledge, DMD exon 78 deletion has never been described in literature and, according to prediction, it should lead to loss of reading frame in the dystrophin gene. To further assess the actual effect of exon 78 deletion, we analysed cDNA from muscle mRNA. This analysis confirmed the absence of 32 bp of exon 78. Exclusion of exon 78 changes the open reading frame of exon 79 and generate a downstream stop codon, producing a dystrophin protein of 3703 amino acids instead of 3685 amino acids. Albeit loss of reading frame usually leads to protein degradation and severe phenotype, in this case, we demonstrated that deletion of DMD exon 78 can be associated with a functional protein able to bind DGC complex and a very mild phenotype. This study adds a novel deletion in DMD gene in human and helps to define the compliance between maintaining/disrupting the reading frame and clinical form of the disease.


Asunto(s)
Creatina Quinasa/sangre , Distrofina/genética , Exones , Eliminación de Gen , Distrofia Muscular de Duchenne/diagnóstico , Adolescente , Biopsia , Codón de Terminación , ADN Complementario/genética , Humanos , Masculino , Músculo Esquelético/patología , Distrofia Muscular de Duchenne/genética , Mialgia/fisiopatología , Sistemas de Lectura Abierta , Fenotipo , ARN Mensajero/genética
14.
Stem Cell Res ; 27: 25-29, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29304398

RESUMEN

Caveolinopathies are a heterogeneous family of genetic pathologies arising from alterations of the caveolin-3 gene (CAV3), encoding for the isoform specifically constituting muscle caveolae. Here, by reprogramming peripheral blood mononuclear cells, we report the generation of induced pluripotent stem cells (iPSCs) from three patients carrying the ΔYTT deletion, T78K and W101C missense mutations in caveolin-3. iPSCs displayed normal karyotypes and all the features of pluripotent stem cells in terms of morphology, specific marker expression and ability to differentiate in vitro into the three germ layers. These lines thus represent a human cellular model to study the molecular basis of caveolinopathies. Resource table.


Asunto(s)
Caveolina 3/metabolismo , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Leucocitos Mononucleares/citología , Leucocitos Mononucleares/metabolismo , Caveolina 3/genética , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Células Cultivadas , Reprogramación Celular/genética , Reprogramación Celular/fisiología , Citometría de Flujo , Humanos , Cariotipo , Mutación/genética , Mutación Missense/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
15.
EBioMedicine ; 8: 5-6, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27428402
16.
Lab Invest ; 96(8): 862-71, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27295345

RESUMEN

Activation of the proteasome pathway is one of the secondary processes of cell damage, which ultimately lead to muscle degeneration and necrosis in Duchenne muscular dystrophy (DMD). In mdx mice, the proteasome inhibitor bortezomib up-regulates the membrane expression of members of the dystrophin complex and reduces the inflammatory reaction. However, chronic inhibition of the 26S proteasome may be toxic, as indicated by the systemic side-effects caused by this drug. Therefore, we sought to determine the components of the ubiquitin-proteasome pathway that are specifically activated in human dystrophin-deficient muscles. The analysis of a cohort of patients with genetically determined DMD or Becker muscular dystrophy (BMD) unveiled a selective up-regulation of the ubiquitin ligase tripartite motif-containing protein 32 (TRIM32). The induction of TRIM32 was due to a transcriptional effect and it correlated with disease severity in BMD patients. In contrast, atrogin1 and muscle RING-finger protein-1 (MuRF-1), which are strongly increased in distinct types of muscular atrophy, were not affected by the DMD dystrophic process. Knock-out models showed that TRIM32 is involved in ubiquitination of muscle cytoskeletal proteins as well as of protein inhibitor of activated STAT protein gamma (Piasγ) and N-myc downstream-regulated gene, two inhibitors of satellite cell proliferation and differentiation. Accordingly, we showed that in DMD/BMD muscle tissue, TRIM32 induction was more pronounced in regenerating myofibers rather than in necrotic muscle cells, thus pointing out a role of this protein in the regulation of human myoblast cell fate. This finding highlights TRIM32 as a possible therapeutic target to favor skeletal muscle regeneration in DMD patients.


Asunto(s)
Distrofia Muscular de Duchenne/metabolismo , Factores de Transcripción/biosíntesis , Proteínas de Motivos Tripartitos/biosíntesis , Ubiquitina-Proteína Ligasas/biosíntesis , Animales , Estudios de Casos y Controles , Humanos , Masculino , Ratones , Ratones Endogámicos mdx , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/patología , Músculo Cuádriceps/metabolismo , Músculo Cuádriceps/patología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Regeneración , Factores de Transcripción/genética , Proteínas de Motivos Tripartitos/genética , Ubiquitina-Proteína Ligasas/genética , Regulación hacia Arriba
17.
Nat Cell Biol ; 18(1): 132-8, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26571211

RESUMEN

Genetic defects in myelin formation and maintenance cause leukodystrophies, a group of white matter diseases whose mechanistic underpinnings are poorly understood. Hypomyelination and congenital cataract (HCC), one of these disorders, is caused by mutations in FAM126A, a gene of unknown function. We show that FAM126A, also known as hyccin, regulates the synthesis of phosphatidylinositol 4-phosphate (PtdIns(4)P), a determinant of plasma membrane identity. HCC patient fibroblasts exhibit reduced PtdIns(4)P levels. FAM126A is an intrinsic component of the plasma membrane phosphatidylinositol 4-kinase complex that comprises PI4KIIIα and its adaptors TTC7 and EFR3 (refs 5,7). A FAM126A-TTC7 co-crystal structure reveals an all-α-helical heterodimer with a large protein-protein interface and a conserved surface that may mediate binding to PI4KIIIα. Absence of FAM126A, the predominant FAM126 isoform in oligodendrocytes, destabilizes the PI4KIIIα complex in mouse brain and patient fibroblasts. We propose that HCC pathogenesis involves defects in PtdIns(4)P production in oligodendrocytes, whose specialized function requires massive plasma membrane expansion and thus generation of PtdIns(4)P and downstream phosphoinositides. Our results point to a role for FAM126A in supporting myelination, an important process in development and also following acute exacerbations in multiple sclerosis.


Asunto(s)
Membrana Celular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/metabolismo , Fosfatos de Fosfatidilinositol/biosíntesis , Animales , Humanos , Ratones , Mutación/genética , Fosfatos de Fosfatidilinositol/genética , Estructura Terciaria de Proteína , Transporte de Proteínas/genética , Transporte de Proteínas/fisiología
18.
Am J Pathol ; 185(12): 3349-60, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26465071

RESUMEN

Infiltration of immune cells and chronic inflammation substantially affect skeletal and cardiac muscle degeneration in Duchenne muscular dystrophy. In the immune system, extracellular adenosine triphosphate (ATP) released by dying cells is sensed as a danger associated molecular pattern through P2 purinergic receptors. Specifically, the P2X7 subtype has a prominent role in regulating immune system physiology and contributes to inflammasome activation also in muscle cells. Here, we show that in vivo blockade of the extracellular ATP/P2X purinergic signaling pathway by periodate-oxidized ATP delayed the progression of the dystrophic phenotype and dampened the local inflammatory response in mdx mice, a spontaneous mouse model of dystrophin deficiency. Reduced infiltration of leukocytes and macrophages and decreased expression of IL-6 were revealed in the muscles of periodate-oxidized ATP-treated mdx mice. Concomitantly, an increase in Foxp3(+) immunosuppressive regulatory T cells was observed and correlated with enhanced myofiber regeneration. Moreover, we detected reduced concentrations of profibrotic cytokines, including transforming growth factor-ß and connective tissue growth factor, in muscles of periodate-oxidized ATP-treated mdx mice. The improvement of inflammatory features was associated with increased strength and reduced necrosis, thus suggesting that pharmacologic purinergic antagonism altering the adaptive immune component in the muscle infiltrates might represent a promising therapeutic approach in Duchenne muscular dystrophy.


Asunto(s)
Músculo Esquelético/inmunología , Distrofia Muscular de Duchenne/inmunología , Receptores Purinérgicos P2X/fisiología , Linfocitos T Reguladores/inmunología , Adenosina Trifosfato/análogos & derivados , Adenosina Trifosfato/inmunología , Adenosina Trifosfato/farmacología , Adenosina Trifosfato/uso terapéutico , Animales , Progresión de la Enfermedad , Evaluación Preclínica de Medicamentos/métodos , Masculino , Ratones Endogámicos C57BL , Ratones Endogámicos mdx , Músculo Esquelético/patología , Músculo Esquelético/fisiología , Distrofia Muscular de Duchenne/patología , Distrofia Muscular de Duchenne/prevención & control , Condicionamiento Físico Animal , Antagonistas del Receptor Purinérgico P2X/farmacología , Antagonistas del Receptor Purinérgico P2X/uso terapéutico , Receptores Purinérgicos P2X/metabolismo , Regeneración/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Linfocitos T Reguladores/efectos de los fármacos
19.
Ann Neurol ; 76(2): 206-12, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24782409

RESUMEN

OBJECTIVE: Alterations of sphingolipid metabolism are implicated in the pathogenesis of many neurodegenerative disorders. METHODS: We identified a homozygous nonsynonymous mutation in CERS1, the gene encoding ceramide synthase 1, in 4 siblings affected by a progressive disorder with myoclonic epilepsy and dementia. CerS1, a transmembrane protein of the endoplasmic reticulum (ER), catalyzes the biosynthesis of C18-ceramides. RESULTS: We demonstrated that the mutation decreases C18-ceramide levels. In addition, we showed that downregulation of CerS1 in a neuroblastoma cell line triggers ER stress response and induces proapoptotic pathways. INTERPRETATION: This study demonstrates that impairment of ceramide biosynthesis underlies neurodegeneration in humans.


Asunto(s)
Ceramidas/biosíntesis , Retículo Endoplásmico/metabolismo , Proteínas de la Membrana/metabolismo , Epilepsias Mioclónicas Progresivas/metabolismo , Esfingosina N-Aciltransferasa/metabolismo , Argelia , Demencia/genética , Demencia/metabolismo , Retículo Endoplásmico/genética , Humanos , Proteínas de la Membrana/genética , Mutación/genética , Epilepsias Mioclónicas Progresivas/genética , Hermanos , Esfingosina N-Aciltransferasa/genética
20.
Curr Neurol Neurosci Rep ; 13(3): 333, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23335027

RESUMEN

Disorders of glycogen metabolism are inborn errors of energy homeostasis affecting primarily skeletal muscle, heart, liver, and, less frequently, the central nervous system. These rare diseases are quite variable in age of onset, symptoms, morbidity, and mortality. This review provides an update on disorders of glycogen metabolism affecting skeletal muscle exclusively or predominantly. From a pathogenetic perspective, we classify these diseases as primary, if the defective enzyme is directly involved in glycogen/glucose metabolism, or secondary, if the genetic mutation affects proteins which indirectly regulate glycogen or glucose processing. In addition to summarizing the most recent clinical reports in this field, we briefly describe animal models of human glycogen disorders. These experimental models are greatly improving the understanding of the pathogenetic mechanisms underlying the muscle degenerative process associated to these diseases and provide in vivo platforms to test new therapeutic strategies.


Asunto(s)
Modelos Animales de Enfermedad , Enfermedad del Almacenamiento de Glucógeno/metabolismo , Enfermedad del Almacenamiento de Glucógeno/fisiopatología , Enfermedades Neuromusculares/metabolismo , Enfermedades Neuromusculares/fisiopatología , Animales , Glucógeno/metabolismo , Humanos , Enfermedades por Almacenamiento Lisosomal/metabolismo , Enfermedades por Almacenamiento Lisosomal/fisiopatología , Enfermedades Musculares/metabolismo , Enfermedades Musculares/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...