Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
R Soc Open Sci ; 8(7): 202178, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34295517

RESUMEN

The conglomerate reservoir is rich in oil and gas reserves; however, the gravel's mechanical properties and laws are difficult to gain through laboratory experiments, which furthermore constrain the hydraulic fracturing design. To analyse the failure law of conglomerate, we simulated the uniaxial compression test based on discrete element software PFC2D and analysed the effect of different cementation strength, gravel content and gravel geometry on the rock deformation and failure characteristics. Results show that (i) as the cementation strength decreases, the compressive strength and elasticity modulus both reduce clearly, while the crack shapes get more complex and the critical value is 0.3; (ii) as the gravel content increases, the conglomerate strength first decreases then increases under the influences of cracks bypassing gravels; cementation strength and gravel content of the conglomerate both contribute to the increase in local additional stress, which leads to a series of changes in crack shapes and mechanical properties of the conglomerate. Based on the above research, the conglomerate strength and crack shapes after failure are relatively complex due to the common influence of cementation strength and gravel content. The gravel edge crack caused by stress concentration is the micro-mechanism that affects the conglomerate mechanical properties.

2.
ACS Omega ; 5(18): 10382-10394, 2020 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-32426595

RESUMEN

The brittle failure of Chengkou shale occurs throughout the exploration and development processes of hydrocarbons. To investigate the failure mechanisms of Chengkou shale and analyze the associated mechanical behavior such as crack initiation, propagation, and coalescence at different stress levels, a series of laboratory experiments were conducted on servo-controlled triaxial cells equipped with ultrasound monitoring. The experimental results show that key mechanical parameters such as peak stress σp, stress onset of dilation σci, and strain at peak stress εp exhibit nearly linear relationships at various confining pressures. In rock bodies, the wave velocity evolution at different stress levels very consistently reproduces the shape of stress-strain curves, while shear wave velocity v s is more sensitive to crack damage than compressional wave velocity v p. Furthermore, the Hoek-Brown failure criterion has an advantage over the Mohr-Coulomb fracture criterion due to the former's higher correlation coefficient r 2. The wing crack damage models with sandwiched multilayers help explain the mixed tensile and shear failure mechanisms of Chengkou shale. The experimental results provide significant guidance for optimizing the design of drilling and well completion jobs, especially hydraulic fracturing operations, both in Chengkou shale and in other brittle shales around the world.

3.
ACS Omega ; 5(15): 8847-8857, 2020 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-32337447

RESUMEN

In this paper, the high-temperature/high-pressure triaxial testing system of rocks is used to study the effect of spontaneous fluid imbibition on the formation mechanism of fracture networks, by means of acoustic emission (AE) monitoring and ultrasound measurement. After the water-shale interaction, the rock mechanical parameters such as rock strength, elastic modulus, cohesion, and internal friction angle of shales significantly decrease as the imbibition time increases, indicating that the fluid has a strong influence on the mechanical properties of brittle shales. The stress-strain curves of the wet and dry shales and their AE characteristics are quite different: (i) the stress-strain curve of wet shale samples shows multiple fluctuations before macroscopic failure, and its cumulative AE number curve presents a step-like jump many times that corresponds to the local microcracking; (ii) the stress-strain curve of dry shale samples mainly shows the characteristic of linear elastic deformation during early loading, which has less AE event number, and the step-like jump is not observed in all the AE curves. The dry shale only has a large number of AE events until it is close to macroscopic failure. Nuclear magnetic resonance, mineral composition, and microstructure analysis show that Chengkou shale generally develops micro-nanoscale pores with a small pore throat, and thus strong capillary spontaneous absorption occurs. The shale-water interaction includes both chemical and physical effects, which affect the key parameters such as acoustic velocity, frictional force on the surfaces of artificial fracture, fracability, and other mechanical properties. This paper provides new insights to the investigation on the formation mechanism of artificial fracture networks in brittle shales.

4.
Sci Rep ; 8(1): 3919, 2018 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-29500356

RESUMEN

Shales have abundant micro-nano pores. Meanwhile, a considerable amount of fracturing liquid is imbibed spontaneously in the hydraulic fracturing process. The spontaneous imbibition in tortuous micro-nano pores is special to shale, and dynamic contact angle and slippage are two important characteristics. In this work, we mainly investigate spontaneous imbibition considering dynamic contact angle and slip effect in fractal tortuous capillaries. We introduce phase portrait analysis to analyse the dynamic state and stability of imbibition. Moreover, analytical solutions to the imbibition equation are derived under special situations, and the solutions are verified by published data. Finally, we discuss the influences of slip length, dynamic contact angle and gravity on spontaneous imbibition. The analysis shows that phase portrait is an ideal tool for analysing spontaneous imbibition because it can evaluate the process without solving the complex governing ordinary differential equations. Moreover, dynamic contact angle and slip effect play an important role in fluid imbibition in fractal tortuous capillaries. Neglecting slip effect in micro-nano pores apparently underestimates imbibition capability, and ignoring variations in contact angle causes inaccuracy in predicting imbibition speed at the initial stage of the process. Finally, gravity is one of the factors that control the stabilisation of the imbibition process.

5.
Sci Rep ; 8(1): 2601, 2018 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-29422663

RESUMEN

The large amount of nanoscale pores in shale results in the inability to apply Darcy's law. Moreover, the gas adsorption of shale increases the complexity of pore size characterization and thus decreases the accuracy of flow regime estimation. In this study, an apparent permeability model, which describes the adsorptive gas flow behavior in shale by considering the effects of gas adsorption, stress dependence, and non-Darcy flow, is proposed. The pore size distribution, methane adsorption capacity, pore compressibility, and matrix permeability of the Barnett and Eagle Ford shales are measured in the laboratory to determine the critical parameters of gas transport phenomena. The slip coefficients, tortuosity, and surface diffusivity are predicted via the regression analysis of the permeability data. The results indicate that the apparent permeability model, which considers second-order gas slippage, Knudsen diffusion, and surface diffusion, could describe the gas flow behavior in the transition flow regime for nanoporous shale. Second-order gas slippage and surface diffusion play key roles in the gas flow in nanopores for Knudsen numbers ranging from 0.18 to 0.5. Therefore, the gas adsorption and non-Darcy flow effects, which involve gas slippage, Knudsen diffusion, and surface diffusion, are indispensable parameters of the permeability model for shale.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA