Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Magn Reson Imaging ; 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38517321

RESUMEN

BACKGROUND: It remains unclear whether extracting peritumoral volume (PTV) radiomics features are useful tools for evaluating response to chemotherapy of epithelial ovarian cancer (EOC). PURPOSE: To evaluate MRI radiomics signatures (RS) capturing subtle changes of PTV and their added evaluation performance to whole tumor volume (WTV) for response to chemotherapy in patients with EOC. STUDY TYPE: Retrospective. POPULATION: 219 patients aged from 15 to 79 years were enrolled. FIELD STRENGTH/SEQUENCE: 3.0 or 1.5T, axial fat-suppressed T2-weighted imaging (FS-T2WI), diffusion-weighted imaging (DWI), and contrast enhanced T1-weighted imaging (CE-T1WI). ASSESSMENT: MRI features were extracted from the four axial sequences and six different volumes of interest (VOIs) (WTV and WTV + PTV (WPTV)) with different peritumor sizes (PS) ranging from 1 to 5 mm. Those features underwent preprocessing, and the most informative features were selected using minimum redundancy maximum relevance and least absolute shrinkage and selection operator to construct the RS. The optimal RS, with the highest area under the curve (AUC) of receiver operating characteristic was then integrated with independent clinical characteristics through multivariable logistic regression to construct the radiomics-clinical model (RCM). STATISTICAL TESTS: Mann-Whitney U test, chi-squared test, DeLong test, log-rank test. P < 0.05 indicated a significant difference. RESULTS: All the RSs constructed on WPTV exhibited higher AUCs (0.720-0.756) than WTV (0.671). Of which, RS with PS = 2 mm displayed a significantly better performance (AUC = 0.756). International Federation of Gynecology and Obstetrics (FIGO) stage was identified as the exclusive independent clinical evaluation characteristic, and the RCM demonstrated higher AUC (0.790) than the RS, but without statistical significance (P = 0.261). DATA CONCLUSION: The radiomics features extracted from PTV could increase the efficiency of WTV radiomics for evaluating the chemotherapy response of EOC. The cut-off of 2 mm PTV was a reasonable value to obtain effective evaluation efficiency. LEVEL OF EVIDENCE: 4 TECHNICAL EFFICACY: Stage 2.

2.
J Hazard Mater ; 465: 132943, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38141316

RESUMEN

The study employed Density Functional Theory (DFT) to investigate the catalytic debromination mechanism of brominated epoxy resins (BERs) by iron (Fe) and copper (Cu) catalysts. By introducing electric field (EF), intramolecular electron transfer and polarization effects on BERs debromination were explored and experimentally validated. Results indicated that the bond dissociation energy (BDE) of the C-Br bond was 312.27 kJ/mol without catalysis, while with Fe, Cu, and EF, it was 114.47 kJ/mol, 94.85 kJ/mol, and 292.59 kJ/mol, respectively, enhancing reactivity. EF parallel to the C-Br bond and oriented toward the C atom, altered electrostatic potential and dipole moment around C-Br bond, leading to 68.60% and 50.19% increment in electronic contribution difference and molecule polarity, respectively, thereby reducing the C-Br BDE. Fe and Cu facilitated electron transfers with BERs, inducing reactions between their negative electrostatic potentials and Br's positive potential, changing electron sharing, resulting in 19.87% and 12.11% increase in polarity, respectively, and further BDE reduction. Structural modifications by the EF and catalysts also intensified van der Waals forces with bromine atoms and decreased spatial hindrance, collectively making C-Br bond breakage easier. Experiments revealed the EF enhanced BERs' debromination efficiency but hindered Fe/Cu's catalysis at lower temperatures.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA