Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 17(10)2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38793305

RESUMEN

Three types of solution treatment and aging were designed to reveal the α' decomposition and its effect on the mechanical properties of near-α Ti-80 alloy, as follows: solution at 970 °C then quenching (ST), ST + aging at 600 °C for 5 h (STA-1), and ST + aging 600 °C for 24 h (STA-2). The results show that the microstructures of the ST samples were mainly composed of equiaxed αp and acicular α', with a large number of dislocations confirmed by the KAM results. After subsequent aging for 5 h, α' decomposed into acicular fine αs and nano-ß (intergranular ß, intragranular ß) in the STA-1 specimen, which obstructed dislocation motion during deformation, resulting in the STA-1 specimen exhibiting the most excellent yield strength (1012 MPa) and maintaining sufficient elongation (8.1%) compared with the ST (898 MPa) and STA-2 (871 MPa) samples. By further extending the aging time to 24 h, the size of acicular αs and nano-ß gradually increased while the density of dislocations decreased, which resulted in a decrease in strength and an increase in plasticity. Based on this, a microstructures-properties correlation model was proposed. This study provides a new method for strength-plasticity matching of near-α titanium alloys through α' decomposition to acicular αs+nano-ß.

2.
Materials (Basel) ; 16(17)2023 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-37687445

RESUMEN

The dynamic spheroidization mechanism and its orientation dependence in Ti-6Al-2Mo-2V-1Fe alloys during subtransus hot deformation were studied in this work. For this purpose, hot compression tests were carried out at temperatures of 780-880 °C, with strain rates of 0.001-0.1 s-1. Based on SEM, EBSD and TEM characterization, the results showed that the aspect ratio of the α phase decreased with increasing deformation temperatures and decreasing strain rates. At 880 °C/0.001 s-1, the aspect ratio of the α phase was the smallest at 2.05. The proportion of HAGBs decreased with increasing temperatures and strain rates, which was different from the trend of the spheroidization; this indicated that the formation of HAGBs was not necessary for the spheroidization process. Furthermore, the formation of the α/α interface was related to the evolution of dislocations and twin boundaries at high (880 °C) and low temperatures (780 °C), respectively. Moreover, the dependence of lamellar spheroidization on the crystallographic orientation tilt from the compression direction (θ) was clarified: when θ was between 45° and 60°, both the prism slip and basal slip systems were activated together, which was more favorable for spheroidization. This study could provide guidance for titanium alloy process designs and microstructure regulation.

3.
Materials (Basel) ; 16(3)2023 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-36770147

RESUMEN

In this paper, the dependence of dynamic recrystallization (DRX) and post-dynamic recrystallization (PDRX) of TC18 alloy on strain rate within the range of 0.001 s-1~1 s-1 was investigated through isothermal compression and subsequent annealing in the single-phase region. Electron backscatter diffraction (EBSD) characterization was employed to quantify microstructure evolution and to reveal the recrystallization mechanism. At the thermo-deformation stage, the DRX fraction does not exceed 10% at different strain rates, due to the high stacking fault energy of the ß phase. During the subsequent annealing process, the total recrystallization fraction increases from 10.5% to 79.6% with the strain rate increasing from 0.001 s-1 to 1 s-1. The variations in the geometrically necessary dislocation (GND) density before and after annealing exhibit a significant discrepancy with the increasing strain rate, indicating that the GND density is a key factor affecting the PDRX rate. The PDRX mechanisms, namely meta-dynamic recrystallization (MDRX), continuous static recrystallization (CSRX) and discontinuous static recrystallization (DSRX), were also revealed during the annealing process. A new kinetic model coupling DRX and PDRX was proposed to further describe the correlation between recrystallization and the strain rate during continuous deformation and annealing. This new model facilitates the prediction of recrystallization fraction during isothermal deformation and annealing of titanium alloys.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...