Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 16(28): 37318-37327, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38953533

RESUMEN

Structural color, renowned for its enduring vibrancy, has been extensively developed and applied in the fields of display and anticounterfeiting. However, its limitations in brightness and saturation hinder further application in these areas. Herein, we propose a pendant evaporation self-assembly method to address these challenges simultaneously. By leveraging natural convection and Marangoni flow synchronization, the self-assembly process enhances the dynamics and duration of colloidal nanoparticles, thereby enhancing the orderliness of colloidal photonic crystals. On average, this technique boosts the brightness of structural color by 20% and its saturation by 35%. Moreover, pendant evaporation self-assembly is simple and convenient to operate, making it suitable for industrial production. We anticipate that its adoption will remarkably advance the industrialization of structural color, facilitating its engineering applications across various fields, such as display technology and anticounterfeiting identification.

2.
Adv Sci (Weinh) ; 11(20): e2305876, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38576190

RESUMEN

Robust anti-counterfeiting techniques aim for easy identification while remaining difficult to forge, especially for high-value items such as currency and passports. However, many existing anti-counterfeiting techniques rely on deterministic processes, resulting in loopholes for duplication and counterfeiting. Therefore, achieving high-level encryption and easy authentication through conventional anti-counterfeiting techniques has remained a significant challenge. To address this, this work proposes a solution that combined fluorescence and structural colors, creating a physically unclonable multiplex encryption system (PUMES). In this study, the physicochemical properties of colloidal photonic inks are systematically adjusted to construct a comprehensive printing phase diagram, revealing the printable region. Furthermore, the brightness and color saturation of inkjet-printed colloidal photonic crystal structural colors are optimized by controlling the substrate's hydrophobicity, printed droplet volume, and the addition of noble metals. Finally, fluorescence is incorporated to build PUMES, including macroscopic fluorescence and structural color patterns, as well as microscopic physically unclonable fluorescence patterns. The PUMES with intrinsic randomness and high encoding capacity are authenticated by a deep learning algorithm, which proved to be reliable and efficient under various observation conditions. This approach can provide easy identification and formidable resistance against counterfeiting, making it highly promising for the next-generation anti-counterfeiting of currency and passports.

3.
RSC Adv ; 14(4): 2720-2726, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38229709

RESUMEN

Magnetic microhelix motors are widely employed in various applications such as cargo transportation, drug delivery, toxic substance declogging, and cell manipulation, due to their unique adaptive magnetic manipulation capabilities. In this work, high-precision stereoscopic additive manufacturing techniques were used to produce customized microhelices with varying structural parameters, including different pitch numbers (2-4 pitches), sizes (0.1-0.25 mm), and taper angles (172°-180°). Their motion performance in mesoscopic tubes was systematically investigated. The magnetic microhelix motors' speed increases when circle numbers and taper angles decrease, while circle diameters increase. The magnetic microhelix motors' speed could achieve a 1500% enhancement reaching 0.16 mm s-1 in a 0.3 mm tube, with a pitch number of 3, diameter of 0.2 mm, and taper angle of 172°. Furthermore, their vessel declogging capability is confirmed in in vitro experiments.

4.
J Colloid Interface Sci ; 607(Pt 1): 881-889, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34536941

RESUMEN

The silicon coated Carbon nanotubes (CNTs) nanocomposite (CNTs@Si) with a shell structure was successfully synthesized by a simple chemical vapor deposition (CVD) method. In this work, the CNTs@Si is not only introduced as a structural material providing oxidation performance, but also as an extremely effective electromagnetic wave (EMW) absorption nanocomposite. Dielectric characteristics EMW absorption properties within the frequency range of 2-18 GHz of CNTs@Si were studied, and the oxidation resistance of CNTs@Si was characterized. Due to the dense space conductive network formed by CNTs, the EMW absorbing properties of CNTs@Si nanocomposite features excellent electromagnetic wave absorption capacity at a filling amount of 1%. The maximum reflection loss (RL) reaches -61.57 dB at the thickness of 1.8 mm, and a wide effective absorption bandwidth (EAB, RL < -10 dB) of 2.88 GHz is achieved. The obtained CNTs@Si core-shell nanocomposites exhibit excellent antioxidant performance and absorbing performance due to silicon bridging. Efficient electromagnetic wave absorption and excellent oxidation resistance of CNTs@Si can be regarded as a brand-new competitive candidate for EMW absorption materials in harsh environment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA