Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biosens Bioelectron ; 236: 115404, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37295131

RESUMEN

An enzyme-catalyzed high-performing reaction with in-situ amplified photocurrent was innovatively designed for the quantitative screening of carcinoembryonic antigen (CEA) in biological fluids by coupling with carbon-functionalized inorganic photoanode. A split-type photoelectrochemical (PEC) immunoassay was initially executed with horseradish peroxidase (HRP)-labeled secondary antibody on the capture antibody-coated microtiter. Then, the photocurrent of carbon-functionalized inorganic photoanode were improved through enzymatic insoluble product. Experimental results revealed that introduction of the outer carbon layer on the inorganic photoactive materials caused the amplifying photocurrent because of the improving light harvesting and separation of photo-generated e-/h+ pairs. Under optimum conditions, the split-type photoelectrochemical immunosensing platform displayed good photocurrent responses within the dynamic range of 0.01 - 80 ng mL-1 CEA, and allowed the detection of CEA as low as a concentration of 3.6 pg mL-1 at the 3Sblank level. The strong attachment of antibodies onto nano label and high-performing photoanode resulted in a good repeatability and intermediate precision down to 9.83%. No significant differences at the 0.05 significance level were encountered in the analysis of six human serum specimens between the developed PEC immunoassay and the commercially available CEA ELISA kits.


Asunto(s)
Técnicas Biosensibles , Antígeno Carcinoembrionario , Humanos , Antígeno Carcinoembrionario/análisis , Carbono , Técnicas Biosensibles/métodos , Ensayo de Inmunoadsorción Enzimática , Inmunoensayo/métodos , Anticuerpos , Catálisis , Técnicas Electroquímicas/métodos , Límite de Detección
2.
Comput Struct Biotechnol J ; 21: 2960-2972, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37228702

RESUMEN

In the development and study of antimicrobial peptides (AMPs), researchers have kept a watchful eye on peptides from the brevinin family because of their extensive antimicrobial activities and anticancer potency. In this study, a novel brevinin peptide was isolated from the skin secretions of the Wuyi torrent frog, Amolops wuyiensis (A. wuyiensisi), named B1AW (FLPLLAGLAANFLPQIICKIARKC). B1AW displayed anti-bacterial activity against Gram-positive bacteria Staphylococcus aureus (S. aureus), methicillin-resistant Staphylococcus aureus (MRSA), and Enterococcus faecalis (E. faecalis). B1AW-K was designed to broaden the antimicrobial spectrum of B1AW. The introduction of a lysine residue generated an AMP with enhanced broad-spectrum antibacterial activity. It also displayed the ability to inhibit the growth of human prostatic cancer PC-3, non-small lung cancer H838, and glioblastoma cancer U251MG cell lines. In molecular dynamic (MD) simulations, B1AW-K had a faster approach and adsorption to the anionic membrane than B1AW. Therefore, B1AW-K was considered a drug prototype with a dual effect, which deserves further clinical investigation and validation.

3.
Toxins (Basel) ; 15(3)2023 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-36977115

RESUMEN

Aculeate hymenopterans use their venom for a variety of different purposes. The venom of solitary aculeates paralyze and preserve prey without killing it, whereas social aculeates utilize their venom in defence of their colony. These distinct applications of venom suggest that its components and their functions are also likely to differ. This study investigates a range of solitary and social species across Aculeata. We combined electrophoretic, mass spectrometric, and transcriptomic techniques to characterize the compositions of venoms from an incredibly diverse taxon. In addition, in vitro assays shed light on their biological activities. Although there were many common components identified in the venoms of species with different social behavior, there were also significant variations in the presence and activity of enzymes such as phospholipase A2s and serine proteases and the cytotoxicity of the venoms. Social aculeate venom showed higher presence of peptides that cause damage and pain in victims. The venom-gland transcriptome from the European honeybee (Apis mellifera) contained highly conserved toxins which match those identified by previous investigations. In contrast, venoms from less-studied taxa returned limited results from our proteomic databases, suggesting that they contain unique toxins.


Asunto(s)
Himenópteros , Toxinas Biológicas , Animales , Abejas , Ponzoñas/toxicidad , Proteómica , Transcriptoma
4.
Biosens Bioelectron ; 221: 114210, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-35718654

RESUMEN

Designing a universal route for rational synthesis of a family of hollow multinary chalcogenide semiconductors for photoelectrochemical biosensors is still facing to the enormous challenges ahead. Herein a template-assisted Cu2O surface vulcanization and etching through a Pearson's hard and soft acid-base (HSAB) principle was utilized to synthesize hollow Cu2-xS photoactive materials for photocurrent detection of prostate-specific antigen (PSA). We initially synthesized cubic Cu2O and further surface sulfidation and HCl etching to obtain cubic Cu2-xS. Inspiringly, stirring of CuS, phosphine (TBP: tributylphosphine) and other metal salts could replace Cu+ ions to obtain new metal sulfides without changing the framework, size and thickness of the original material. This interesting phenomenon could be explained by HSAB theory, which soft base was favorable for combining soft acid (Cu+) to drive Cu+ out of the framework. Based on the results, HSAB-based reaction system was applied to develop novel photoelectrochemical PSA immunoassay. Polymetallic-doped sulfides (ZnxCd1-xS) had better photocurrent response than pure binary sulfides. A copper oxide (CuO)-labeled detection antibody is captured in a microplate along with a sandwich immunoassay in the presence of target PSA. Subsequently, the CuO nanoparticles were dissociated by hydrochloric acid, releasing a large amount of copper ions to participate in the cation exchange reaction with ZnxCd1-xS. Such excellent photoelectric conversion materials could sensitively detect target PSA with a wide linear range from 1.0 pg/mL to 10 ng/mL at a limit of detection down to 0.32 pg/mL. Additionally, favorable stability, great anti-interference ability, easy-fabrication, low-cost, and satisfactory accuracy for the analysis of actual samples were acquired. Importantly, the concept of cation exchange reaction can be widely used to synthesize advanced nanomaterials for fabrication of high-efficiency biosensing systems.


Asunto(s)
Técnicas Biosensibles , Nanopartículas del Metal , Humanos , Masculino , Técnicas Biosensibles/métodos , Antígeno Prostático Específico/análisis , Técnicas Electroquímicas/métodos , Límite de Detección , Cadmio , Inmunoensayo/métodos , Cobre , Sulfuros
5.
Biosens Bioelectron ; 202: 114006, 2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35091371

RESUMEN

Photoelectrochemical immunoassays/immunosensors have been employed for biomarker detection, but most are lack of high-efficiency photo-electron transfer nanomaterials for widespread utilization. Herein we synthesized single-atom platinum-anchored Zn0.5Cd0.5S nanostructures to construct an innovative photoelectrochemical (PEC) immunosensor for photocurrent determination of prostate-specific antigen (PSA). Improvement of the photocurrent on the sensing interface derived from the ion-exchange reaction between cupric oxide nanoparticle (CuO NP)-labeled secondary antibody and single-atom platinum-anchored Zn0.5Cd0.5S. The experimental results showed that the doping of zinc ions and atomically dispersed platinum into CdS could significantly enhance the photocurrent, which further improved the sensitivity of immunoassay. Specifically, upon sensing the target PSA, a CuO-labeled detection antibody was introduced by sandwich immunoreaction and numerous copper ions (Cu2+) were released from CuO by acid to participate in the ion-exchange reaction. Thereafter, the ion-exchange reaction between Cu2+ ions and single-atom platinum-anchored Zn0.5Cd0.5S resulted in the quenching of the photocurrent from single-atom platinum-anchored Zn0.5Cd0.5S owing to weak photoactive material CuxS formation. Under optimized conditions, single-atom platinum-anchored Zn0.5Cd0.5S-based photoelectrochemical immunoassay gave good PEC signals toward PSA from 1.0 to 10000 pg/mL with a limit of detection of 0.22 pg/mL. Additionally, good repeatability, intermediate precision, strong anti-interference and high accuracy (relative to commercialized ELISA kit) for the measurement of human serum specimens were acquired. Importantly, use of single-atom platinum-anchored Zn0.5Cd0.5S can provide an important idea for early tumor screening and diagnosis.


Asunto(s)
Técnicas Biosensibles , Antígeno Prostático Específico , Técnicas Biosensibles/métodos , Cadmio , Técnicas Electroquímicas/métodos , Humanos , Inmunoensayo/métodos , Límite de Detección , Masculino , Zinc
6.
Pharmaceutics ; 13(7)2021 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-34206897

RESUMEN

Kunitz-like trypsin inhibitors are one of the most noteworthy research objects owing to their significance in pharmacological studies, including anticarcinogenic activity, obesity regulation and anticoagulation. In the current study, a novel Kunitz-like trypsin inhibitor, Kunitzin-AH, was isolated from the skin secretion of Amolops hainanensis. The novel peptide displayed a modest trypsin inhibitory activity with the inhibitor constant (Ki) value of 1.18 ± 0.08 µM without inducing damage to healthy horse erythrocytes. Then, a series of shortened variants of Kunitzin-AH were designed by truncating a peptide loop and site mutation inside the loop to illustrate the structure-activity relationship of the trypsin inhibition function. Among the variants, a significant decrease was observed for the Cys-Cys loop domain, while the extension of an Arg at N-terminus (RCKAAFC) retained the inhibitory activity, indicating that the -RCK-motif is essential in forming the reactive domain for exerting the inhibitory activity. Furthermore, substitutions of Ala by hydrophobic or hydrophilic residues decreased the activity, indicating suitable steric hindrance provides convenience for the combination of trypsin. Additionally, the conformational simulation of the analogues processed with Chimera and Gromacs and further combination simulations between the peptides and trypsin conducted with HDOCK offered a potential opportunity for the natural trypsin inhibitory drug design. The truncated sequence, AH-798, may be a good replacement for the full-length peptide, and can be optimized via cyclization for further study.

7.
Mikrochim Acta ; 188(1): 14, 2021 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-33389237

RESUMEN

A simple and feasible pH meter-based immunoassay is reported for detection of C-reactive protein (CRP) using glucose oxidase (GOD)-conjugated dendrimer loaded with platinum nanozyme. Initially, platinum nanozymes were loaded into the dendrimers through an in situ synthetic method. Then, GOD and monoclonal anti-CRP antibody with a high molar ratio were covalently conjugated onto carboxylated dendrimers via typical carbodiimide coupling. The immunoreaction was carried out with a competitive mode in a CRP-coated microplate. Along with formation of immunocomplex, the added glucose was oxidized into gluconic acid and hydrogen peroxide by GOD, and the latter was further decomposed by platinum nanozyme, thus accelerating chemical reaction in the positive direction. The produced gluconic acid changed the pH of detection solution, which was determined using a handheld pH meter. Under optimum conditions, the pH meter-based immunoassay gave a good signal toward target CRP from 0.01 to 100 ng mL-1. The limit of detection was 5.9 pg mL-1. An intermediate precision ≤ 11.2% was acquired with batch-to-batch identification. No nonspecific adsorption was observed during a series of procedures to detect target CRP, and the cross-reaction against other biomarkers was very low. Importantly, our system gave well-matched results for analysis of human serum samples relative to a referenced ELISA kit.Graphical abstract.


Asunto(s)
Proteína C-Reactiva/análisis , Dendrímeros/química , Glucosa Oxidasa/química , Inmunoensayo/métodos , Nanopartículas del Metal/química , Anticuerpos Inmovilizados/inmunología , Anticuerpos Monoclonales/inmunología , Proteína C-Reactiva/inmunología , Catálisis , Humanos , Peróxido de Hidrógeno/química , Concentración de Iones de Hidrógeno , Límite de Detección , Oxidación-Reducción , Platino (Metal)/química , Reproducibilidad de los Resultados
8.
Anal Bioanal Chem ; 413(4): 1073-1080, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33230701

RESUMEN

Phenylboronic acid-functionalized nanometer-sized CaCO3 particles (PBA-CaCO3) were designed to determine the carcinoembryonic antigen (CEA) glycoprotein with a portable Ca2+ ion-selective electrode (Ca-ISE) through a typical boronate ester bond. CaCO3 nanospheres were conjugated to 3-aminophenylboronic acid by amine-epoxy reaction, whereas target CEA was captured into the aptasensing interface by the immobilized thiolated aptamer on gold substrate. Upon PBA-CaCO3 introduction, 3-aminophenylboronic acid labeled to CaCO3 microsphere specifically recognized with CEA glycoprotein based on sugar-boronic acid interaction to form a sandwiched complex. The carried CaCO3 was dissolved under acidic conditions to release Ca2+ ion with a portable Ca-ISE readout. Thanks to the specific boronate ester bond between PBA and 1,2-diols, the synthesized PBA-CaCO3 exhibited good conjugation properties for CEA glycoprotein. Under optimum conditions, Ca-ISE-based aptasensing platform exhibited good electrode potential response for evaluation of target CEA, and allowed detection of CEA at a concentration as low as 7.3 pg mL-1. Importantly, Ca-ISE-based aptasensing system is readily extended to detect other disease-related glycoproteins by controlling the corresponding aptamer.


Asunto(s)
Aptámeros de Nucleótidos/química , Técnicas Biosensibles/instrumentación , Ácidos Borónicos/química , Carbonato de Calcio/química , Antígeno Carcinoembrionario/sangre , Electrodos de Iones Selectos , Técnicas Electroquímicas/instrumentación , Diseño de Equipo , Humanos , Límite de Detección , Nanoestructuras/química , Nanoestructuras/ultraestructura
9.
Comput Struct Biotechnol J ; 18: 2453-2462, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33005307

RESUMEN

DDX20 (DEAD-box polypeptide 20) is implicated in many cellular processes involving alteration of RNA secondary structure. The role of DDX20 in gastric cancer is still unknown. In the research, the expression of DDX20 and the functional roles of DDX20 in gastric cancer were detected. The increased DDX20 expression in gastric cancer tissue compared with normal gastric tissue was observed. Functional experiments indicated that DDX20 promoted gastric cancer MGC-803 and AGS cells growth, migration, and invasion in vitro. Surprisingly, survival analysis showed that high expression of DDX20 is a favorable prognostic factor for patients with gastric cancer. In addition, enrichment analysis revealed that there is a positive correlation between DDX20 expression and T cell activation in gastric cancer. but not in normal gastric tissues. Furthermore, we found that DDX20 expression level has significant positive correlations with activated CD8 + T cells and activated CD4 + T cells in gastric cancer. Therefore, we hypothesize that the prognostic role of DDX20 in gastric cancer patients may be due to patients with high DDX20 expression contained better immune activation. Taken together, these findings suggest that DDX20 can promote the progression of gastric cancer in vitro and its prognostic value in gastric cancer may be related to many factors, including immune activation.

10.
Mol Ther Oncolytics ; 16: 7-19, 2020 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-31909181

RESUMEN

Although the physicochemical properties of antimicrobial peptides (AMPs) and anticancer peptides (ACPs) are very similar, it remains unclear which specific parameter(s) of ACPs confer the major anticancer activity. By answering how to construct a short AMP/ACP that could easily be synthesized in the most cost effective way plus conferring a maximum anticancer effect is a very important scientific breakthrough in the development of protein/peptide drugs. In this study, an 18-amino-acids antimicrobial peptide, AcrAP1 (named AP1-Z1), was used as a template. Bioinformatics algorithms were then performed to design its six mutants (AP1-Z3a, AP1-Z3b, AP1-Z5a, AP1-Z5b, AP1-Z7, and AP1-Z9). After a series of in vitro experiments plus intensive computational analysis, the data demonstrated that AP1-Z5a and AP1-Z5b induced both apoptosis and anti-angiogenic effects to achieve the maximum anticancer activity. Specifically, the most effective mutant, AP1-Z5b, exhibited high selectivity for the charged membrane in molecular dynamics simulations. These findings clearly demonstrated that both charge and hydrophobicity play an important role and are necessary to reach an optimum equilibrium for optimizing the anticancer activity of AMPs. Overall, the present study provides a very crucial theoretical basis and important scientific evidence on the key physicochemical parameters of ACP drugs development.

11.
Biomolecules ; 9(6)2019 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-31234333

RESUMEN

Amphibians are a natural source of abundant antimicrobial peptides and thus have been widely investigated for isolation of such biomolecules. Many new antimicrobial peptide families have been discovered from amphibians. In this study, a novel antimicrobial peptide named Limnonectes fujianensis Brevinvin (LFB) has been identified in the skin secretion from the Fujian large headed frog, Limnonectes fujianensis. The cDNA sequence was cloned from a skin secretion library and the predicted mature peptide was identified through MS/MS fragmentation sequencing of reverse phase HPLC fractions on the same sample. LFB was predicted to be an amphipathic, hydrophobic, alpha helical, and beta turn peptide that inserts into a lipid bilayer in order to kill the cells. In antimicrobial assays, a synthetic replicate of this novel antimicrobial peptide demonstrated significant activity against the Gram-positive bacterium Staphylococcus aureus, the Gram-negative bacterium Escherichia coli and the yeast, Candida albicans. This novel peptide was highly potent (MIC 4.88 uM) against Gram-negative bacterium, and also has the ability to inhibit the growth of human cancer cell lines with IC50 values ranging from 18.9 µM down to 2.0 µM. These findings help to enrich our understanding of Brevinin-like peptides. Moreover, the data presented here validate frog secretion as a source of potential novel antimicrobial peptides, that also exhibit anti-tumor properties, that could be useful for the treatment of cancer.


Asunto(s)
Proteínas Anfibias/farmacología , Péptidos Catiónicos Antimicrobianos/farmacología , Anuros , Piel/química , Secuencia de Aminoácidos , Proteínas Anfibias/química , Animales , Péptidos Catiónicos Antimicrobianos/química , Candida albicans/efectos de los fármacos , Línea Celular Tumoral , Escherichia coli/efectos de los fármacos , Humanos , Concentración 50 Inhibidora , Staphylococcus aureus/efectos de los fármacos
12.
Toxicol In Vitro ; 58: 195-206, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30930232

RESUMEN

Envenomations by Asian pitvipers can induce multiple clinical complications resulting from coagulopathic and neuropathic effects. While intense research has been undertaken for some species, functional coagulopathic effects have been neglected. As these species' venoms affect the blood coagulation cascade we investigated their effects upon the human clotting cascade using venoms of species from the Azemiops, Calloselasma, Deinagkistrodon and Hypnale genera. Calloselasma rhodostoma, Deinagkistrodon acutus, and Hypnale hypnale produced net anticoagulant effects through pseudo-procoagulant clotting of fibrinogen, resulting in weak, unstable, transient fibrin clots. Tropidolaemus wagleri was only weakly pseudo-procoagulant, clotting fibrinogen with only a negligible net anticoagulant effect. Azemiops feae and Tropidolaemus subannulatus did not affect clotting. This is the first study to examine in a phylogenetic context the coagulotoxic effects of related genera of basal Asiatic pit-vipers. The results reveal substantial variation between sister genera, providing crucial information about clinical effects and implications for antivenom cross-reactivity.


Asunto(s)
Coagulación Sanguínea/efectos de los fármacos , Venenos de Víboras/toxicidad , Viperidae , Animales , Factor Xa/metabolismo , Humanos , Filogenia , Plasminógeno/metabolismo , Protrombina/metabolismo , Tromboelastografía
13.
Biosens Bioelectron ; 132: 210-216, 2019 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-30875633

RESUMEN

A simple and feasible electrochemical immunosensing protocol with glucometer readout was designed for the detection of low-abundance disease-related biomarker (alpha-fetoprotein; AFP) on the basis of backfilling rolling cycle amplification (RCA) with invertase-DNA2 conjugates on the detection antibody. The assay consisted of the immunoreaction, RCA reaction, DNA2-invertase hybridization and glucose measurement. Initially, a sandwiched immunoreaction was carried out between anti-AFP capture antibody-coated microplate between nanogold-labeled pAb2 detection antibody conjugated with DNA1 primer (DNA1-AuNP-pAb2) in the presence of target ATP. Thereafter, the carried primers triggered the RCA reaction in the presence of circular DNA template, polymerase and dNTP, to produce numerous repeated oligonucleotide sequences for hybridization with many invertase-DNA2 conjugates. The carried invertase molecules accompanying the hybridization reaction hydrolyzed sucrose into glucose, thereby resulting in the amplification of the detectable signal on a handheld personal glucometer (PGM). Under optimum conditions, the developed immunoassay exhibited high sensitivity for the quantitative screening of AFP within a dynamic range of 0.1-100 ng mL-1 at a low detection limit of 0.087 ng mL-1. Other biomarkers and proteins did not interfere the signals of this system. In addition, this method was utilized to determine human serum samples containing target AFP, and received well-matched results with the referenced enzyme-linked immunosorbent assay (ELISA) method.


Asunto(s)
Anticuerpos Inmovilizados/química , Técnicas Biosensibles/instrumentación , Automonitorización de la Glucosa Sanguínea/instrumentación , ADN/química , Técnicas para Inmunoenzimas/instrumentación , alfa-Fetoproteínas/análisis , Técnicas Biosensibles/métodos , Automonitorización de la Glucosa Sanguínea/métodos , Ensayo de Inmunoadsorción Enzimática , Enzimas Inmovilizadas/química , Diseño de Equipo , Oro/química , Humanos , Técnicas para Inmunoenzimas/métodos , Nanopartículas del Metal/química , Hibridación de Ácido Nucleico/métodos
14.
Analyst ; 144(4): 1433-1441, 2019 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-30608087

RESUMEN

A new electrochemical immunosensing protocol by coupling with a magneto-controlled flow-through microfluidic device was developed for the sensitive detection of alpha-fetoprotein (AFP) on magnetic beads (MB) using ferrocene derivative polymer nanospheres (FDNP) as the electroactive mediators. The immunosensing probe was prepared by covalent conjugation of monoclonal mouse anti-human AFP antibodies with magnetic beads, while the recognition element was constructed by means of immobilizing polyclonal rabbit anti-human AFP antibodies on the redox FDNP. Upon target AFP introduction, the sandwich-type immunoreaction was carried out between the immunosensing probe and the recognition element, and the formed immunocomplex was captured in the detection cell with an external magnet. Ferrocene polymer nanospheres synthesized by infinite coordination polymerization were utilized as the signal-generation tags during the electrochemical measurement. Under optimal conditions, the magneto-controlled flow-through immunosensing platform exhibited good electrochemical responses toward target AFP within a dynamic working range of 0.01-100 ng mL-1 and with a low detection limit of 5.7 pg mL-1. The nanoparticles-based sensing systems also gave good reproducibility, high specificity and long-term stability. Moreover, our strategy displayed well-matched accuracy for the analysis of human serum specimens relative to commercial Roche 2010 Electrochemiluminescence (ECL) Automated Analyzer.

15.
Toxicol In Vitro ; 55: 62-74, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30471431

RESUMEN

Venom can affect any part of the body reachable via the bloodstream. Toxins which specifically act upon the coagulation cascade do so either by anticoagulant or procoagulant mechanisms. Here we investigated the coagulotoxic effects of six species within the medically important pit viper genus Protobothrops (Habu) from the Chinese mainland and Japanese islands, a genus known to produce hemorrhagic shock in envenomed patients. Differential coagulotoxicity was revealed: P. jerdonii and P. mangshanensis produced an overall net anticoagulant effect through the pseudo-procoagulant clotting of fibrinogen; P. flavoviridis and P. tokarensis exhibit a strong anticoagulant activity through the destructive cleavage of fibrinogen; and while P. elegans and P. mucrosquamatus both cleaved the A-alpha and B-beta chains of fibrinogen they did not exhibit strong anticoagulant activity. These variations in coagulant properties were congruent with phylogeny, with the closest relatives exhibiting similar venom effects in their action upon fibrinogen. Ancestral state reconstruction indicated that anticoagulation mediated by pseudo-procoagulant cleavage of fibrinogen is the basal state, while anticoagulation produced by destructive cleavage of fibrinogen is the derived state within this genus. This is the first in depth study of its kind highlighting extreme enzymatic variability, functional diversification and clotting diversification within one genus surrounding one target site, governed by variability in co-factor dependency. The documentation that the same net overall function, anticoagulation, is mediated by differential underlying mechanics suggests limited antivenom cross-reactivity, although this must be tested in future work. These results add to the body of knowledge necessary to inform clinical management of the envenomed patient.


Asunto(s)
Coagulación Sanguínea/efectos de los fármacos , Venenos de Crotálidos/toxicidad , Trimeresurus , Animales , Factor Xa/fisiología , Fibrinógeno/fisiología , Humanos , Trombina/fisiología
16.
Sci Rep ; 8(1): 14502, 2018 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-30267012

RESUMEN

Amphibian venom-derived peptides have high potential in the field of anticancer drug discovery. We have isolated a novel Bowman-Birk proteinase inhibitor (BBI)-type peptide from the skin secretion of Pelophylax esculentus (PE) named PE-BBI, and evaluated its bio-functions and anti-cancer activity in vitro. PE-BBI is a heptadecapeptide with C-terminal amidation. The mRNA sequence and primary structure of PE-BBI were identified using RT-PCR and LC/MS, respectively. A trypsin inhibitory assay was used to characterize the serine proteinase inhibitory activity of synthetic PE-BBI. PE-BBI's myotropic activity was analyzed using isolated rat bladder and rat-tail artery smooth muscle tissues, and the anti-cancer ability of PE-BBI using human colorectal cancer cells. PE-BBI's mechanism of action was investigated using Discovery studio software. PE-BBI showed trypsin inhibitory activity (Ki = 310 ± 72 nM), strong myotropic activity, and cytotoxicity that were specific to cancer cells, and no side effect to normal epithelial cells. The docking stimulation showed that PE-BBI had high affinity to several members of human kallikrein related peptidase (KLK) family. This finding helps to enrich our understanding of BBI peptides' mode of action. Moreover, the data presented here validates frog secretions as sources of potential novel proteinase inhibitors for cancer treatment.


Asunto(s)
Venenos de Anfibios/enzimología , Antiinfecciosos , Antineoplásicos , Péptidos , Rana esculenta/metabolismo , Inhibidores de Serina Proteinasa/aislamiento & purificación , Secuencia de Aminoácidos , Animales , Antiinfecciosos/química , Antiinfecciosos/aislamiento & purificación , Antiinfecciosos/farmacología , Antineoplásicos/química , Antineoplásicos/aislamiento & purificación , Antineoplásicos/farmacología , Secuencia de Bases , Candida albicans/efectos de los fármacos , Línea Celular Tumoral , Neoplasias del Colon/patología , Ensayos de Selección de Medicamentos Antitumorales , Escherichia coli/efectos de los fármacos , Femenino , Modelos Moleculares , Simulación del Acoplamiento Molecular , Relajación Muscular/efectos de los fármacos , Músculo Liso/efectos de los fármacos , Péptidos/química , Péptidos/aislamiento & purificación , Péptidos/farmacología , Conformación Proteica , ARN Mensajero/genética , Ratas , Ratas Wistar , Inhibidores de Serina Proteinasa/síntesis química , Inhibidores de Serina Proteinasa/genética , Inhibidores de Serina Proteinasa/farmacología , Piel/enzimología , Staphylococcus aureus/efectos de los fármacos
17.
J Cell Mol Med ; 22(9): 4460-4473, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29993185

RESUMEN

In this study, a novel scorpion venom-derived peptide named Gonearrestide was identified in an in-house constructed scorpion venom library through a combination of high-throughput NGS transcriptome and MS/MS proteome platform. In total, 238 novel peptides were discovered from two scorpion species; and 22 peptides were selected for further study after a battery of functional prediction analysis. Following a series of bioinformatics analysis alongside with in vitro biological functional screenings, Gonearrestide was found to be a highly potent anticancer peptide which acts on a broad spectrum of human cancer cells while causing few if any observed cytotoxic effects on epithelial cells and erythrocytes. We further investigated the precise anticancer mechanism of Gonearrestide by focusing on its effects on the colorectal cancer cell line, HCT116. NGS RNA sequencing was employed to obtain full gene expression profiles in HCT116 cells, cultured in the presence and absence of Gonearrestide, to dissect signalling pathway differences. Taken together the in vitro, in vivo and ex vivo validation studies, it was proven that Gonearrestide could inhibit the growth of primary colon cancer cells and solid tumours by triggering cell cycle arrest in G1 phase through inhibition of cyclin-dependent kinases 4 (CDK4) and up-regulate the expression of cell cycle regulators/inhibitors-cyclin D3, p27, and p21. Furthermore, prediction of signalling pathways and potential binding sites used by Gonearrestide are also presented in this study.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias del Colon/tratamiento farmacológico , Fase G1/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica , Péptidos/farmacología , Venenos de Escorpión/química , Animales , Antineoplásicos/química , Antineoplásicos/aislamiento & purificación , Sitios de Unión , Línea Celular Tumoral , Neoplasias del Colon/genética , Neoplasias del Colon/metabolismo , Neoplasias del Colon/patología , Ciclina D3/genética , Ciclina D3/metabolismo , Quinasa 4 Dependiente de la Ciclina/genética , Quinasa 4 Dependiente de la Ciclina/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/metabolismo , Femenino , Fase G1/genética , Células HCT116 , Humanos , Ratones Desnudos , Péptidos/química , Péptidos/aislamiento & purificación , Unión Proteica , Escorpiones/fisiología , Transducción de Señal , Carga Tumoral/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
18.
Artículo en Inglés | MEDLINE | ID: mdl-29758383

RESUMEN

Night adders (Causus species within the Viperidae family) are amphibian specialists and a common source of snakebite in Africa. Some species are unique in that they have the longest venom glands of any viper, extending approximately 10% of the body length. Despite their potential medical importance and evolutionary novelty, their venom has received almost no research attention. In this study, venoms from a short-glanded species (C. lichtensteinii) and from a long-glanded species (C. rhombeatus) were compared using a series of proteomic and bioactivity testing techniques to investigate and compare the toxin composition and functioning of the venoms of these two species. Both C. rhombeatus and C. lichtensteinii were similar in overall venom composition and inhibition of blood coagulation through non-clotting proteolytic cleavage of fibrinogen. While the 1D gel profiles were very similar to each other in the toxin types present, 2D gel analyses revealed isoformic differences within each toxin classes. This variation was congruent with differential efficacy of South African Institute for Medical Research snake polyvalent antivenom, with C. lichtensteinii unaffected at the dose tested while C. rhombeatus was moderately but significantly neutralized. Despite the variation within toxin classes, the similarity in overall venom biochemistry suggests that the selection pressure for the evolution of long glands served to increase venom yield in order to subjugate proportionally large anurans as a unique form of niche partitioning, and is not linked to significant changes in venom function. These results not only contribute to the body of venom evolution knowledge but also highlight the limited clinical management outcomes for Causus envenomations.


Asunto(s)
Evolución Biológica , Glándulas Exocrinas/crecimiento & desarrollo , Modelos Biológicos , Conducta Predatoria , Venenos de Víboras/metabolismo , Viperidae/crecimiento & desarrollo , Animales , Anticoagulantes/metabolismo , Anticoagulantes/farmacología , Anticoagulantes/toxicidad , Coagulación Sanguínea/efectos de los fármacos , Tamaño Corporal , Venenos Elapídicos/metabolismo , Venenos Elapídicos/farmacología , Venenos Elapídicos/toxicidad , Elapidae , Electroforesis en Gel de Poliacrilamida , Glándulas Exocrinas/metabolismo , Fibrinógeno/metabolismo , Tamaño de los Órganos , Filogenia , Proteolisis/efectos de los fármacos , Proteómica/métodos , Proteínas de Reptiles/metabolismo , Especificidad de la Especie , Venenos de Víboras/farmacología , Venenos de Víboras/toxicidad , Viperidae/fisiología
19.
Cancers (Basel) ; 10(3)2018 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-29558404

RESUMEN

The protein tyrosine phosphatase (PTP) family is involved in multiple cellular functions and plays an important role in various pathological and physiological processes. In many chronic diseases, for example cancer, PTP is a potential therapeutic target for cancer treatment. In the last two decades, dozens of PTP inhibitors which specifically target individual PTP molecules were developed as therapeutic agents. Hepatocellular carcinoma (HCC) is one of the most common malignant tumors and is the second most lethal cancer worldwide due to a lack of effective therapies. Recent studies have unveiled both oncogenic and tumor suppressive functions of PTP in HCC. Here, we review the current knowledge on the involvement of PTP in HCC and further discuss the possibility of targeting PTP in HCC.

20.
Artículo en Inglés | MEDLINE | ID: mdl-29353015

RESUMEN

Pseudechis (black snakes) is an Australasian elapid snake genus that inhabits much of mainland Australia, with two representatives confined to Papua New Guinea. The present study is the first to analyse the venom of all 9 described Pseudechis species (plus one undescribed species) to investigate the evolution of venom composition and functional activity. Proteomic results demonstrated that the typical Pseudechis venom profile is dominated by phospholipase A2 toxins. Strong cytotoxicity was the dominant function for most species. P. porphyriacus, the most basal member of the genus, also exhibited the most divergent venom composition, being the only species with appreciable amounts of procoagulant toxins. The relatively high presence of factor Xa recovered in P. porphyriacus venom may be related to a predominantly amphibian diet. Results of this study provide important insights to guide future ecological and toxinological investigations.


Asunto(s)
Venenos Elapídicos/metabolismo , Hydrophiidae/fisiología , Modelos Moleculares , Proteínas de Reptiles/metabolismo , Animales , Australia , Coagulantes/química , Coagulantes/metabolismo , Coagulantes/toxicidad , Bases de Datos de Proteínas , Venenos Elapídicos/química , Venenos Elapídicos/genética , Venenos Elapídicos/toxicidad , Electroforesis en Gel de Poliacrilamida , Evolución Molecular , Hydrophiidae/crecimiento & desarrollo , Conformación Molecular , Nueva Guinea , Fosfolipasas A2/química , Fosfolipasas A2/genética , Fosfolipasas A2/metabolismo , Fosfolipasas A2/toxicidad , Filogenia , Proteómica/métodos , Proteínas de Reptiles/química , Proteínas de Reptiles/genética , Proteínas de Reptiles/toxicidad , Especificidad de la Especie , Electroforesis Bidimensional Diferencial en Gel
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...