Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Mater ; 34(35): e2201853, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35818810

RESUMEN

Faradaic efficiency for the nitrogen reduction reaction (NRR) is often limited by low N2 solubility in the electrolyte, while a large number of intimate contacts between the electrolyte and solid catalyst can also inevitably sacrifice many active sites for the NRR. Here, it is reported that a "quasi-gas-solid" interface formed in donor-acceptor-based conjugated polymers (CPs) is beneficial to boosting the NRR process and at the same time suppressing the competing hydrogen evolution reaction. Of particular interest, it is found that a semicrystalline CP catalyst, SC-PBDT-TT, exhibits a high Faradaic efficiency of up to 60.5% with a maximum NH3 production rate of 16.8 µg h-1 mg-1 in a neutral-buffered seawater electrolyte. Molecular dynamics and COMSOL Multiphysics simulations reveal the origin of the observed high NRR performance arising from the presence of desirable crystal regions to resist the penetration of H2 O molecules, leading to the formation of a "quasi-gas-solid" interface inside the catalyst for a favorable direct-contact between the catalyst and N2 molecules. Furthermore, high-throughput computations, based on density functional theory, reveal the actual real active site for N2 adsorption and reduction in SC-PBDT-TT. This work provides a new framework for optimizing NRR performance of metal-free catalysts by controlling their crystallinities.

2.
Adv Sci (Weinh) ; 9(13): e2105598, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35253402

RESUMEN

The development of aqueous rechargeable zinc-iodine (Zn-I2 ) batteries is still plagued by the polyiodide shuttle issue, which frequently causes batteries to have inadequate cycle lifetimes. In this study, quaternization engineering based on the concept of "electric double layer" is developed on a commercial acrylic fiber skeleton ($1.55-1.7 kg-1 ) to precisely constrain the polyiodide and enhance the cycling durability of Zn-I2 batteries. Consequently, a high-rate (1 C-146.1 mAh g-1 , 10 C-133.8 mAh g-1 ) as well as, ultra-stable (2000 cycles at 20 C with 97.24% capacity retention) polymer-based Zn-I2 battery is reported. These traits are derived from the strong electrostatic interaction generated by quaternization engineering, which significantly eliminates the polyiodide shuttle issue and simultaneously realizes peculiar solution-based iodine chemistry (I- /I3 - ) in Zn-I2 batteries. The quaternization strategy also presents high practicability, reliability, and extensibility in various complicated environments. In particular, cutting-edge Zn-I2 batteries based on the concept of derivative material (commercially available quaternized resin) demonstrate ≈100% capacity retention over 17 000 cycles at 20 C. This work provides a general and fresh insight into the design and development of large-scale, low-cost, and high-performance zinc-iodine batteries, as well as, other novel iodine storage systems.

3.
J Phys Chem A ; 125(44): 9594-9608, 2021 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-34709807

RESUMEN

The Coulomb explosion (CE) of jet-cooled CH3I molecules using ultrashort (40 fs), nonresonant 805 nm strong-field ionization at three peak intensities (260, 650, and 1300 TW cm-2) has been investigated by multimass velocity map imaging, revealing an array of discernible fragment ions, that is, Iq+ (q ≤ 6), CHn+ (n = 0-3), CHn2+ (n = 0, 2), C3+, H+, H2+, and H3+. Complementary ab initio trajectory calculations of the CE of CH3IZ+ cations with Z ≤ 14 identify a range of behaviors. The CE of parent cations with Z = 2 and 3 can be well-described using a diatomic-like representation (as found previously) but the CE dynamics of all higher CH3IZ+ cations require a multidimensional description. The ab initio predicted Iq+ (q ≥ 3) fragment ion velocities are all at the high end of the velocity distributions measured for the corresponding Iq+ products. These mismatches are proposed as providing some of the clearest insights yet into the roles of nonadiabatic effects (and intramolecular charge transfer) in the CE of highly charged molecular cations.

6.
J Chem Phys ; 153(18): 184201, 2020 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-33187401

RESUMEN

Coulomb explosion velocity-map imaging is a new and potentially universal probe for gas-phase chemical dynamics studies, capable of yielding direct information on (time-evolving) molecular structure. The approach relies on a detailed understanding of the mapping between the initial atomic positions within the molecular structure of interest and the final velocities of the fragments formed via Coulomb explosion. Comprehensive on-the-fly ab initio trajectory studies of the Coulomb explosion dynamics are presented for two prototypical small molecules, formyl chloride and cis-1,2-dichloroethene, in order to explore conditions under which reliable structural information can be extracted from fragment velocity-map images. It is shown that for low parent ion charge states, the mapping from initial atomic positions to final fragment velocities is complex and very sensitive to the parent ion charge state as well as many other experimental and simulation parameters. For high-charge states, however, the mapping is much more straightforward and dominated by Coulombic interactions (moderated, if appropriate, by the requirements of overall spin conservation). This study proposes minimum requirements for the high-charge regime, highlights the need to work in this regime in order to obtain robust structural information from fragment velocity-map images, and suggests how quantitative structural information may be extracted from experimental data.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...