Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 40(4): 296-302, 2024 Apr.
Artículo en Chino | MEDLINE | ID: mdl-38710513

RESUMEN

Objective To evaluate the effects of heme oxygenase-1 (HO-1) gene deletion on immune cell composition and inflammatory injury in lung tissues of mice with lipopolysaccharide (LPS)-induced acute lung injury (ALI). Methods C57BL/6 wild-type (WT) mice and HO-1 conditional-knockout (HO-1-/-) mice on the same background were randomly divided into four groups (n=5 in every group): WT control group, LPS-treated WT group, HO-1-/- control group and LPS-treated HO-1-/- group. LPS-treated WT and HO-1-/- groups were injected with LPS (15 mg/kg) through the tail vein to establish ALI model, while WT control group and HO-1-/- control group were injected with an equivalent volume of normal saline through the tail vein, respectively. Twelve hours later, the mice were sacrificed and lung tissues from each group were collected for analysis. Histopathological alterations of lung tissues were assessed by HE staining. The levels of mRNA expression of tumor necrosis factor α (TNF-α), interleukin 1ß (IL-1ß), and IL-6 were determined by PCR. The percentages of neutrophils (CD45+CD11b+Ly6G+Ly6C-), total monocytes (CD45+CD11b+Ly6Chi), pro-inflammatory monocyte subsets (CD45+CD11b+Ly6ChiCCR2hi) and total macrophages (CD45+CD11b+F4/80+), M1 macrophage (CD45+CD11b+F4/80+CD86+), M2 macrophage (CD45+CD11b+F4/80+CD206+), total T cells (CD45+CD3+), CD3+CD4+ T cells, CD3+CD8+ T cells and myeloid suppressor cells (MDSCs, CD45+CD11b+Gr1+) were detected by flow cytometry. Results Compared with the corresponding control groups, HE staining exhibited increased inflammation in the lung tissues of both LPS-treated WT and HO-1-/- model mice; mRNA expression levels of TNF-α, IL-1ß and IL-6 were up-regulated; the proportions of neutrophils, total monocytes, pro-inflammatory monocyte subsets, MDSCs and total macrophages increased significantly. The percentage of CD3+, CD3+CD4+ and CD3+CD8+ T cells decreased significantly. Under resting-state, compared with WT control mice, the proportion of neutrophils, monocytes and pro-inflammatory monocyte subset increased in lung tissues of HO-1-/- control mice, while the proportion of CD3+ and CD3+CD8+ T cells decreased. Compared with LPS-treated WT mice, the mRNA expression levels of TNF-α and IL-1ß were up-regulated in lung tissues of LPS-treated HO-1-/- mice; the proportion of total monocytes, pro-inflammatory monocyte subsets, M1 macrophages and M1/M2 ratio increased greatly; the percentage of CD3+CD8+ T cells decreased significantly. Conclusion The deletion of HO-1 affects the function of the lung immune system and aggravates the inflammatory injury after LPS stimulation in ALI mice.


Asunto(s)
Lesión Pulmonar Aguda , Hemo-Oxigenasa 1 , Lipopolisacáridos , Pulmón , Ratones Endogámicos C57BL , Ratones Noqueados , Animales , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/genética , Lesión Pulmonar Aguda/inmunología , Lesión Pulmonar Aguda/patología , Pulmón/patología , Pulmón/inmunología , Pulmón/metabolismo , Ratones , Lipopolisacáridos/efectos adversos , Hemo-Oxigenasa 1/genética , Hemo-Oxigenasa 1/metabolismo , Masculino , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Inflamación/genética , Inflamación/inducido químicamente , Inflamación/metabolismo , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo
2.
Langenbecks Arch Surg ; 409(1): 64, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38363369

RESUMEN

BACKGROUND: The wounds failing to heal through a timely and orderly standard of care (SOC) treatment are considered as chronic wounds, which add significant burden to healthcare systems around the world. SOC treatment has been commonly applied for management of chronic wounds, but SOC alone may not be adequate to heal all ulcers effectively. Fish skin graft (FSG) is a xenogenic skin substitute which could be used for accelerating skin healing. The current study was performed with the view of evaluating the effectiveness of FSG as an adjuvant treatment of SOC for chronic ulcer treatment. METHODS: Two authors independently searched the following electronic databases: PubMed, Embase, and CENTRAL, using keywords including "diabetic foot ulcer," "fish skin graft," and "wound healing." Clinical studies that evaluated the clinical outcomes of FSG in treatment of chronic ulcers were included in this meta-analysis. Random- or fixed-effect modeled meta-analyses were performed according to the heterogeneity test result (i.e., I2), to analyze the clinical outcome of FSG. RESULTS: A total of 8 studies were included in qualitative synthesis and meta-analysis, with 145 patients treated by SOC and 245 patients treated by SOC plus FSG. There was no significant difference between two groups for time to healing (MD = 1.99, 95% CI: -3.70~7.67, p = 0.493). The complete healing rate was significantly higher in FSG group compared with SOC alone (OR = 3.44, 95% CI: 2.03~5.82, p < 0.001***). Mean percentage area reduction (PAR) was reported in six studies, with a range of 71.6~97.3%. However, many of these studies did not report the value of standard deviation (SD), so we could not pool the data. No significantly different ulcer recurrence rate (RR = 0.60, 95% CI: 0.07~5.27, p = 0.645) and severe adverse events (SAEs) risk (RR = 1.67, 95% CI: 0.42~6.61, p = 0.467) were found between two groups. CONCLUSIONS: The application of FSG treatment for patients with chronic ulcers that do not respond well to SOC management could significantly increase the complete healing rate compared with SOC alone, without increased recurrence rate and SAEs risk.


Asunto(s)
Pie Diabético , Trasplante de Piel , Humanos , Pie Diabético/cirugía , Pie Diabético/tratamiento farmacológico , Cicatrización de Heridas
3.
Zhonghua Wei Zhong Bing Ji Jiu Yi Xue ; 35(9): 927-932, 2023 Sep.
Artículo en Chino | MEDLINE | ID: mdl-37803951

RESUMEN

OBJECTIVE: To analyze the composition and metabolites of gut microbiota in septic rats by fecal 16s rRNA sequencing and untargeted metabolomics, and to preliminarily explore the effect and potential mechanism of gut microbiota and its metabolites on inflammatory response and multiple organ damage in sepsis. METHODS: Ten males healthy male Wistar rats were randomly divided into a sham operated group (Sham group) and sepsis model group (CLP group) using a random number table method, with 5 rats in each group. A rat sepsis model was established by cecal ligation and perforation (CLP) method. The animals were sacrificed 24 hours after modeling, the levels of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in peripheral blood were detected by enzyme-linked immunosorbent assay (ELISA). Hematoxylin-eosin (HE) staining was used to observe the pathological changes of lung and kidney tissues, and the pathological scores were evaluated. Fecal samples were collected, and 16s rRNA high-throughput sequencing and non-targeted metabolomics were used to screen microbiota, metabolites and potential signal pathways that may play an important role in disease outcomes. Spearman correlation analysis was conducted to jointly analyze the gut microbiota and non-targeted metabolism. RESULTS: Compared with the Sham group, the degree of pathological damage to lung and kidney tissues in the CLP group was significantly increased (lung tissue score: 3.60±0.80 vs. 0.00±0.00, kidney tissue score: 2.40±0.80 vs. 0.00±0.00, both P < 0.01), the level of IL-6 and TNF-α in peripheral blood significantly increased [TNF-α (ng/L): 248.12±55.98 vs. 143.28±36.57, IL-6 (ng/L): 260.26±39.47 vs. 116.01±26.43, both P < 0.05], the species diversity of intestinal flora of rats in the CLP group was significantly reduced, the relative abundance of Morganella, Bacteroides and Escherichia-Shigella were significantly increased, and the relative abundance of Lachnospiraceae NK4A136, Ruminococcus, Romboutsia and Roseburia were significantly reduced. In addition, the biosynthesis and bile secretion of phenylalanine, tyrosine, and tryptophan in the gut microbiota of the CLP group were significantly increased, while the biosynthesis of secondary bile acids was significantly reduced. There was a significant correlation between differential metabolites and differential microbiota. CONCLUSIONS: Sepsis can cause significant changes in the characteristics of gut microbiota and fecal metabolites in rats, which provides a basis for translational research to seek new targets for the treatment of sepsis.


Asunto(s)
Microbioma Gastrointestinal , Sepsis , Ratas , Masculino , Animales , Factor de Necrosis Tumoral alfa , ARN Ribosómico 16S , Interleucina-6 , Ratas Wistar
4.
Clin Sci (Lond) ; 137(18): 1499-1512, 2023 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-37708335

RESUMEN

BACKGROUND: Sepsis engenders an imbalance in the body's inflammatory response, with cytokines assuming a pivotal role in its progression. A relatively recent addition to the interleukin-17 family, denominated interleukin-17D (IL-17D), is notably abundant within pulmonary confines. Nevertheless, its implication in sepsis remains somewhat enigmatic. The present study endeavors to scrutinize the participation of IL-17D in sepsis-induced acute lung injury (ALI). METHODS: The levels of IL-17D in the serum and bronchoalveolar lavage fluid (BALF) of both healthy cohorts and septic patients were ascertained through an ELISA protocol. For the creation of a sepsis-induced ALI model, intraperitoneal lipopolysaccharide (LPS) injections were administered to male C57/BL6 mice. Subsequently, we examined the fluctuations and repercussions associated with IL-17D in sepsis-induced ALI, probing its interrelation with nuclear factor erythroid 2-related factor 2 (Nrf2), alveolar epithelial permeability, and heme oxygenase-1. RESULTS: IL-17D levels exhibited significant reduction both in the serum and BALF of septic patients (P<0.001). Similar observations manifested in mice subjected to LPS-induced acute lung injury (ALI) (P=0.002). Intraperitoneal administration of recombinant interleukin 17D protein (rIL-17D) prompted increased expression of claudin 18 and concomitant enhancement of alveolar epithelial permeability, thus, culminating in improved lung injury (P<0.001). Alveolar epithelial type II (ATII) cells were identified as the source of IL-17D, regulated by Nrf2. Furthermore, a deficiency in HO-1 yielded elevated IL-17D levels (P=0.004), albeit administration of rIL-17D ameliorated the exacerbated pulmonary damage resulting from HO-1 deficiency. CONCLUSION: Nrf2 fosters IL-17D production within AT II cells, thereby conferring a protective role in sepsis-induced ALI.


Asunto(s)
Lesión Pulmonar Aguda , Interleucina-27 , Animales , Humanos , Masculino , Ratones , Lesión Pulmonar Aguda/tratamiento farmacológico , Células Epiteliales Alveolares , Lipopolisacáridos , Factor 2 Relacionado con NF-E2
5.
Int Immunopharmacol ; 123: 110731, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37541109

RESUMEN

Ulcerative colitis (UC) is a complex multifactorial disease, of which the exact etiology is not fully understood. The inappropriate aggressive inflammatory response is closely related to the disease progression of UC. FTY720 is a sphingosine-1-phosphate receptor agonist and acts as a key immunomodulator in inflammation. This study aims to investigate the protective influence of FTY720 on inflammation in the DSS-induced colitis model. In the present study, the C57BL/6 mice and the CCR2-/- mice were exposed to 5% Dextran Sodium Sulfate (DSS) drinking water for 6 days followed by an injection of FTY720 (1 mg/kg/d) or vehicle (PBS) 6 times starting on the next day. The body weight, stool consistency, and occult blood were assessed daily. The inflammatory cytokines level in colon tissues and serum were assessed. Leukocyte subsets of bone marrow (BM), spleen, and colon were analyzed by flow cytometry. Our results demonstrated that FTY720 ameliorated the aberrant immune responses by trapping T cells and inhibiting the polarization of M1 macrophages in colitis mice. The effect of FTY720 on the increased number of colonic macrophages did not dependent on CCR2-mediated monocyte influx, despite most monocytes being reduced after DSS administration in the inflamed colon of CCR2-/- mice. Rather, depletion of CCR2 did not impact the protective influence of FTY720 on colonic injury in acute colitis. All these findings unravel a beneficial function of FTY720 in the inflammatory response to DSS-induced acute colitis, provided further insights into monocyte migration and might provide potential opportunities for UC therapeutic intervention.


Asunto(s)
Colitis Ulcerosa , Colitis , Animales , Ratones , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/tratamiento farmacológico , Colon , Sulfato de Dextran/farmacología , Modelos Animales de Enfermedad , Clorhidrato de Fingolimod/farmacología , Clorhidrato de Fingolimod/uso terapéutico , Inflamación , Macrófagos , Ratones Endogámicos C57BL , Monocitos , Linfocitos T , Receptores CCR2/efectos de los fármacos
6.
Biosci Rep ; 42(9)2022 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-36052717

RESUMEN

BACKGROUND: Chronic obstructive pulmonary disease (COPD) is often accompanied by intestinal symptoms. Myeloid-derived suppressor cells (MDSCs) possess immunosuppressive ability in cancer, chronic inflammation, and infection. The aim of this study was to verify the distribution of MDSCs in emphysema mouse model and participation in lung-gut cross-talk. METHODS: Adult male C57BL/6 mice were exposed to cigarette smoke (CS) for 6 months or injected with porcine pancreas elastase to establish emphysema models. Flow cytometry and immunohistochemistry analysis revealed the distribution of MDSCs in tissues. The expression of inflammation and MDSCs-associated genes in the small intestine and colon were analyzed by real-time PCR. RESULTS: The small intestine and colon of CS-induced emphysematous mice displayed pathological changes, CD4+/CD8+ T cells imbalance, and increased neutrophils, monocytes, and macrophages infiltration. A significant expansion of MDSCs could be seen in CS-affected respiratory and gastrointestinal tract. Importantly, higher expression of MDSCs-related effector molecules inducible nitric oxide synthase (INOS), NADPH oxidase 2 (NOX2), and arginase 1 (ARG-1) suggested the immunosuppressive effect of migrated MDSCs (P<0.05). CONCLUSION: These data provide evidence for lung-gut axis in emphysema model and the participants of MDSCs.


Asunto(s)
Enfisema , Células Supresoras de Origen Mieloide , Enfisema Pulmonar , Animales , Arginasa/genética , Arginasa/metabolismo , Modelos Animales de Enfermedad , Enfisema/metabolismo , Enfisema/patología , Humanos , Inflamación/patología , Pulmón/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Células Supresoras de Origen Mieloide/metabolismo , NADPH Oxidasa 2/metabolismo , Óxido Nítrico Sintasa de Tipo II/genética , Óxido Nítrico Sintasa de Tipo II/metabolismo , Elastasa Pancreática/metabolismo , Elastasa Pancreática/farmacología , Enfisema Pulmonar/genética , Enfisema Pulmonar/metabolismo
7.
Int J Clin Exp Pathol ; 11(12): 5571-5580, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-31949644

RESUMEN

Apoptosis is recognized as an important mechanism in contrast-induced nephropathy (CIN). This study investigated the renal protective effect of cordyceps sinensis (CS) in a diabetic rat model of CIN and the mechanism of its effect. Sixty SD rats were randomly divided into 4 groups, the control group, model group, probucol group, and CS group. We used a diabetic rat model of Iodixanol-induced CIN. Serum creatinine (Scr), blood urea nitrogen (BUN), urinary kidney injury molecule-1 (KIM-1), neutrophil gelatinase associated lipocalin (NGAL) levels were measured to evaluate renal function. Total antioxidative ability (T-AOC), superoxide dismutase (SOD), and malonaldehyde (MDA) levels were assessed to discuss the effect of probucol and CS on oxidative stress. The pathologic changes in the kidney were observed by hematoxylin and eosin (HE) staining and periodic acid-Schiff (PAS) staining. Apoptosis was assessed by transmission electron microscopy and TUNEL staining. Caspase-3, Bax, Bcl2 and phospho-p38 mitogen-activated protein kinase (MAPK) protein expressions were assessed by Western blotting. The model group of rats showed significantly elevated levels of BUN, Scr, urinary KIM-1, NGAL, and parameters of oxidative stress (P<0.05). Both the probucol and CS groups demonstrated significantly lower Scr, BUN, and urinary KIM-1, NGAL levels compared to the model group (P<0.05), with no significant difference between these two groups. The probucol group and the CS group had significantly lower MDA and higher T-AOC, SOD than the model group after modeling (P<0.05). Caspase-3, Bax activation were effectively repressed while Bcl-2 expression was increased by probucol and CS pretreatment. Mechanistically, probucol and CS decreased the expression of JNK protein and increased the expression of ERK protein. CS can effectively reduce kidney damage caused by contrast medium. The underlying mechanism may be that CS accelerates the recovery of renal function and renal pathology by reducing local renal oxidative stress and influencing MAPK signal pathways.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...