Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 430, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38199989

RESUMEN

Lithium-ion batteries play a crucial role in decarbonizing transportation and power grids, but their reliance on high-cost, earth-scarce cobalt in the commonly employed high-energy layered Li(NiMnCo)O2 cathodes raises supply-chain and sustainability concerns. Despite numerous attempts to address this challenge, eliminating Co from Li(NiMnCo)O2 remains elusive, as doing so detrimentally affects its layering and cycling stability. Here, we report on the rational stoichiometry control in synthesizing Li-deficient composite-structured LiNi0.95Mn0.05O2, comprising intergrown layered and rocksalt phases, which outperforms traditional layered counterparts. Through multiscale-correlated experimental characterization and computational modeling on the calcination process, we unveil the role of Li-deficiency in suppressing the rocksalt-to-layered phase transformation and crystal growth, leading to small-sized composites with the desired low anisotropic lattice expansion/contraction during charging and discharging. As a consequence, Li-deficient LiNi0.95Mn0.05O2 delivers 90% first-cycle Coulombic efficiency, 90% capacity retention, and close-to-zero voltage fade for 100 deep cycles, showing its potential as a Co-free cathode for sustainable Li-ion batteries.

2.
Sci Rep ; 13(1): 7271, 2023 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-37142634

RESUMEN

X-ray fluorescence mapping (XRF) is a highly efficient and non-invasive technique for quantifying material composition with micro and nanoscale spatial resolutions. Quantitative XRF analysis, however, confronts challenges from the long-lasting problem called self-absorption. Moreover, correcting two-dimensional XRF mapping datasets is particularly difficult because it is an ill-posed inverse problem. Here we report a semi-empirical method that can effectively correct 2D XRF mapping data. The correction error is generally less than 10% from a comprehensive evaluation of the accuracy in various configurations. The proposed method was applied to quantify the composition distribution around the grain boundaries in an electrochemically corroded stainless steel sample. Highly localized Cr enrichment was found around the crack sites, which was invisible before the absorption correction.

3.
Sensors (Basel) ; 23(7)2023 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-37050499

RESUMEN

With the proliferation of multi-modal data generated by various sensors, unsupervised multi-modal hashing retrieval has been extensively studied due to its advantages in storage, retrieval efficiency, and label independence. However, there are still two obstacles to existing unsupervised methods: (1) As existing methods cannot fully capture the complementary and co-occurrence information of multi-modal data, existing methods suffer from inaccurate similarity measures. (2) Existing methods suffer from unbalanced multi-modal learning and data semantic structure being corrupted in the process of hash codes binarization. To address these obstacles, we devise an effective CLIP-based Adaptive Graph Attention Network (CAGAN) for large-scale unsupervised multi-modal hashing retrieval. Firstly, we use the multi-modal model CLIP to extract fine-grained semantic features, mine similar information from different perspectives of multi-modal data and perform similarity fusion and enhancement. In addition, this paper proposes an adaptive graph attention network to assist the learning of hash codes, which uses an attention mechanism to learn adaptive graph similarity across modalities. It further aggregates the intrinsic neighborhood information of neighboring data nodes through a graph convolutional network to generate more discriminative hash codes. Finally, this paper employs an iterative approximate optimization strategy to mitigate the information loss in the binarization process. Extensive experiments on three benchmark datasets demonstrate that the proposed method significantly outperforms several representative hashing methods in unsupervised multi-modal retrieval tasks.

4.
ACS Appl Mater Interfaces ; 15(10): 13772-13782, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36877214

RESUMEN

Understanding the mechanisms leading to the degradation of alloys in molten salts at elevated temperatures is significant for developing several key energy generation and storage technologies, including concentrated solar and next-generation nuclear power plants. Specifically, the fundamental mechanisms of different types of corrosion leading to various morphological evolution characteristics for changing reaction conditions between the molten salt and alloy remain unclear. In this work, the three-dimensional (3D) morphological evolution of Ni-20Cr in KCl-MgCl2 is studied at 600 °C by combining in situ synchrotron X-ray and electron microscopy techniques. By further comparing different morphology evolution characteristics in the temperature range of 500-800 °C, the relative rates between diffusion and reaction at the salt-metal interface lead to different morphological evolution pathways, including intergranular corrosion and percolation dealloying. In this work, the temperature-dependent mechanisms of the interactions between metals and molten salts are discussed, providing insights for predicting molten salt corrosion in real-world applications.

5.
Angew Chem Int Ed Engl ; 62(23): e202300943, 2023 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-36893078

RESUMEN

Combined synchrotron X-ray nanotomography imaging, cryogenic electron microscopy (cryo-EM) and modeling elucidate how potassium (K) metal-support energetics influence electrodeposit microstructure. Three model supports are employed: O-functionalized carbon cloth (potassiophilic, fully-wetted), non-functionalized cloth and Cu foil (potassiophobic, nonwetted). Nanotomography and focused ion beam (cryo-FIB) cross-sections yield complementary three-dimensional (3D) maps of cycled electrodeposits. Electrodeposit on potassiophobic support is a triphasic sponge, with fibrous dendrites covered by solid electrolyte interphase (SEI) and interspersed with nanopores (sub-10 nm to 100 nm scale). Lage cracks and voids are also a key feature. On potassiophilic support, the deposit is dense and pore-free, with uniform surface and SEI morphology. Mesoscale modeling captures the critical role of substrate-metal interaction on K metal film nucleation and growth, as well as the associated stress state.

6.
Sci Rep ; 12(1): 20785, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36456654

RESUMEN

Porous materials with high specific surface area, high porosity, and high electrical conductivity are promising materials for functional applications, including catalysis, sensing, and energy storage. Molten salt dealloying was recently demonstrated in microwires as an alternative method to fabricate porous structures. The method takes advantage of the selective dissolution process introduced by impurities often observed in molten salt corrosion. This work further investigates molten salt dealloying in bulk Ni-20Cr alloy in both KCl-MgCl2 and KCl-NaCl salts at 700 â„ƒ, using scanning electron microscopy, energy dispersive spectroscopy, and X-ray diffraction (XRD), as well as synchrotron X-ray nano-tomography. Micro-sized pores with irregular shapes and sizes ranging from sub-micron to several microns and ligaments formed during the process, while the molten salt dealloying was found to progress several microns into the bulk materials within 1-16 h, a relatively short reaction time, enhancing the practicality of using the method for synthesis. The ligament size increased from ~ 0.7 µm to ~ 1.3 µm in KCl-MgCl2 from 1 to 16 h due to coarsening, while remaining ~ 0.4 µm in KCl-NaCl during 16 h of exposure. The XRD analysis shows that the corrosion occurred primarily near the surface of the bulk sample, and Cr2O3 was identified as a corrosion product when the reaction was conducted in an air environment (controlled amount sealed in capillaries); thus surface oxides are likely to slow the morphological coarsening rate by hindering the surface diffusion in the dealloyed structure. 3D-connected pores and grain boundary corrosion were visualized by synchrotron X-ray nano-tomography. This study provides insights into the morphological and chemical evolution of molten salt dealloying in bulk materials, with a connection to molten salt corrosion concerns in the design of next-generation nuclear and solar energy power plants.

7.
Nature ; 610(7930): 67-73, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36131017

RESUMEN

The high volatility of the price of cobalt and the geopolitical limitations of cobalt mining have made the elimination of Co a pressing need for the automotive industry1. Owing to their high energy density and low-cost advantages, high-Ni and low-Co or Co-free (zero-Co) layered cathodes have become the most promising cathodes for next-generation lithium-ion batteries2,3. However, current high-Ni cathode materials, without exception, suffer severely from their intrinsic thermal and chemo-mechanical instabilities and insufficient cycle life. Here, by using a new compositionally complex (high-entropy) doping strategy, we successfully fabricate a high-Ni, zero-Co layered cathode that has extremely high thermal and cycling stability. Combining X-ray diffraction, transmission electron microscopy and nanotomography, we find that the cathode exhibits nearly zero volumetric change over a wide electrochemical window, resulting in greatly reduced lattice defects and local strain-induced cracks. In-situ heating experiments reveal that the thermal stability of the new cathode is significantly improved, reaching the level of the ultra-stable NMC-532. Owing to the considerably increased thermal stability and the zero volumetric change, it exhibits greatly improved capacity retention. This work, by resolving the long-standing safety and stability concerns for high-Ni, zero-Co cathode materials, offers a commercially viable cathode for safe, long-life lithium-ion batteries and a universal strategy for suppressing strain and phase transformation in intercalation electrodes.

8.
Nano Lett ; 22(9): 3818-3824, 2022 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-35471058

RESUMEN

The rapidly growing demand of electrical vehicles (EVs) requires high-energy-density lithium-ion batteries (LIBs) with excellent cycling stability and safety performance. However, conventional polycrystalline high-Ni cathodes severely suffer from intrinsic chemomechanical degradation and fast capacity fade. The emerging single-crystallization strategy offers a promising pathway to improve the cathode's chemomechanical stability; however, the single-crystallinity of the cathode is not always guaranteed, and residual grain boundaries (GBs) could persist in nonideal synthesis conditions, leading to the formation of "quasi-single-crystalline" (QSC) cathodes. So far, there has been a lack of understanding of the influence of these residual GBs on the electrochemical performance and structural stability. Herein, we investigate the degradation pathway of a QSC high-Ni cathode through transmission electron microscopy and X-ray techniques. The residual GBs caused by insufficient calcination time dramatically exacerbate the cathode's chemomechanical instability and cycling performance. Our work offers important guidance for next-generation cathodes for long-life LIBs.

9.
Comput Intell Neurosci ; 2022: 9696422, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35096051

RESUMEN

Under the continuous impact of the epidemic, online learning methods represented by MOOC have developed rapidly. The course forum area has produced a large amount of text-based unstructured data, which can reflect the potential characteristics of learners' emotional states and behavioral interactions, and has an important impact on students' learning outcomes. To this end, this paper constructs an emotional and behavioral analysis model based on online forum texts, obtains forum data from the "Python Language Programming" course on the Chinese University MOOC platform, uses domain dictionary emotion classification method to analyze learning emotions, and based on the method of cognitive behavior coding table and knowledge construction behavior coding table analyzes learners' cognitive behavior and knowledge construction behavior. It can dynamically analyze learners' emotions, behavior changes, and evolutionary trends. This research provides opinions and suggestions on the improvement of platform interactive functions for teachers' online teaching, students' online learning, and platform management, which can effectively improve the efficiency and effectiveness of online learning.


Asunto(s)
Educación a Distancia , Emociones , Humanos , Conocimiento , Aprendizaje , Universidades
10.
Nano Lett ; 21(22): 9797-9804, 2021 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-34752113

RESUMEN

The pressing demand in electrical vehicle (EV) markets for high-energy-density lithium-ion batteries (LIBs) requires further increasing the Ni content in high-Ni and low-Co cathodes. However, the commercialization of high-Ni cathodes is hindered by their intrinsic chemomechanical instabilities and fast capacity fade. The emerging single-crystalline strategy offers a promising solution, yet the operation and degradation mechanism of single-crystalline cathodes remain elusive, especially in the extremely challenging ultrahigh-Ni (Ni > 90%) regime whereby the phase transformation, oxygen loss, and mechanical instability are exacerbated with increased Ni content. Herein, we decipher the atomic-scale stabilization mechanism controlling the enhanced cycling performance of an ultrahigh-Ni single-crystalline cathode. We find that the charge/discharge inhomogeneity, the intergranular cracking, and oxygen-loss-related phase degradations that are prominent in ultrahigh-Ni polycrystalline cathodes are considerably suppressed in their single-crystalline counterparts, leading to improved chemomechanical and cycling stabilities of the single-crystalline cathodes. Our work offers important guidance for designing next-generation single-crystalline cathodes for high-capacity, long-life LIBs.

11.
ACS Cent Sci ; 7(10): 1676-1687, 2021 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-34729411

RESUMEN

Aqueous electrochemical systems suffer from a low energy density due to a small voltage window of water (1.23 V). Using thicker electrodes to increase the energy density and highly concentrated "water-in-salt" (WIS) electrolytes to extend the voltage range can be a promising solution. However, thicker electrodes produce longer diffusion pathways across the electrode. The highly concentrated salts in WIS electrolytes alter the physicochemical properties which determine the transport behaviors of electrolytes. Understanding how these factors interplay to drive complex transport phenomena in WIS batteries with thick electrodes via deterministic analysis on the rate-limiting factors and kinetics is critical to enhance the rate-performance in these batteries. In this work, a multimodal approach-Raman tomography, operando X-ray diffraction refinement, and synchrotron X-ray 3D spectroscopic imaging-was used to investigate the chemical heterogeneity in LiV3O8-LiMn2O4 WIS batteries with thick porous electrodes cycled under different rates. The multimodal results indicate that the ionic diffusion in the electrolyte is the primary rate-limiting factor. This study highlights the importance of fundamentally understanding the electrochemically coupled transport phenomena in determining the rate-limiting factor of thick porous WIS batteries, thus leading to a design strategy for 3D morphology of thick electrodes for high-rate-performance aqueous batteries.

12.
Nat Commun ; 12(1): 3441, 2021 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-34108466

RESUMEN

Three-dimensional bicontinuous porous materials formed by dealloying contribute significantly to various applications including catalysis, sensor development and energy storage. This work studies a method of molten salt dealloying via real-time in situ synchrotron three-dimensional X-ray nano-tomography. Quantification of morphological parameters determined that long-range diffusion is the rate-determining step for the dealloying process. The subsequent coarsening rate was primarily surface diffusion controlled, with Rayleigh instability leading to ligament pinch-off and creating isolated bubbles in ligaments, while bulk diffusion leads to a slight densification. Chemical environments characterized by X-ray absorption near edge structure spectroscopic imaging show that molten salt dealloying prevents surface oxidation of the metal. In this work, gaining a fundamental mechanistic understanding of the molten salt dealloying process in forming porous structures provides a nontoxic, tunable dealloying technique and has important implications for molten salt corrosion processes, which is one of the major challenges in molten salt reactors and concentrated solar power plants.

13.
Nat Commun ; 12(1): 2350, 2021 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-33879789

RESUMEN

High-nickel content cathode materials offer high energy density. However, the structural and surface instability may cause poor capacity retention and thermal stability of them. To circumvent this problem, nickel concentration-gradient materials have been developed to enhance high-nickel content cathode materials' thermal and cycling stability. Even though promising, the fundamental mechanism of the nickel concentration gradient's stabilization effect remains elusive because it is inseparable from nickel's valence gradient effect. To isolate nickel's valence gradient effect and understand its fundamental stabilization mechanism, we design and synthesize a LiNi0.8Mn0.1Co0.1O2 material that is compositionally uniform and has a hierarchical valence gradient. The nickel valence gradient material shows superior cycling and thermal stability than the conventional one. The result suggests creating an oxidation state gradient that hides the more capacitive but less stable Ni3+ away from the secondary particle surfaces is a viable principle towards the optimization of high-nickel content cathode materials.

14.
Angew Chem Int Ed Engl ; 60(32): 17350-17355, 2021 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-33217148

RESUMEN

High-nickel cathodes attract immense interest for use in lithium-ion batteries to boost Li-storage capacity while reducing cost. For overcoming the intergranular-cracking issue in polycrystals, single-crystals are considered an appealing alternative, but aggravating concerns on compromising the ionic transport and kinetic properties. We report here a quantitative assessment of redox reaction in single-crystal LiNi0.8 Mn0.1 Co0.1 O2 using operando hard X-ray microscopy/spectroscopy, revealing a strong dependence of redox kinetics on the state of charge (SOC). Specifically, the redox is sluggish at low SOC but increases rapidly as SOC increases, both in bulk electrodes and individual particles. The observation is corroborated by transport measurements and finite-element simulation, indicating that the sluggish kinetics in single-crystals is governed by ionic transport at low SOC and may be alleviated through synergistic interaction with polycrystals integrated into a same electrode.

15.
Nat Commun ; 11(1): 5700, 2020 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-33177510

RESUMEN

Interfacial issues commonly exist in solid-state batteries, and the microstructural complexity combines with the chemical heterogeneity to govern the local interfacial chemistry. The conventional wisdom suggests that "point-to-point" ion diffusion at the interface determines the ion transport kinetics. Here, we show that solid-solid ion transport kinetics are not only impacted by the physical interfacial contact but are also closely associated with the interior local environments within polycrystalline particles. In spite of the initial discrete interfacial contact, solid-state batteries may still display homogeneous lithium-ion transportation owing to the chemical potential force to achieve an ionic-electronic equilibrium. Nevertheless, once the interior local environment within secondary particle is disrupted upon cycling, it triggers charge distribution from homogeneity to heterogeneity and leads to fast capacity fading. Our work highlights the importance of interior local environment within polycrystalline particles for electrochemical reactions in solid-state batteries and provides crucial insights into underlying mechanism in interfacial transport.

16.
iScience ; 23(10): 101576, 2020 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-33083742

RESUMEN

Lithium-sulfur batteries are paid much attention owing to their high specific capacity and energy density. However, their practical applications are impeded by poor electrochemical performance due to the dissolved polysulfides. The concentration of soluble polysulfides has a linear relationship with the internal heat generation. The issue of heat transport inside lithium-sulfur batteries is often overlooked. Here, we designed a functional separator that not only had a high thermal conductivity of 0.65 W m-1 K-1 but also alleviated the diffusion of dissolved active materials to the lithium anode, improving the electrochemical performance and safety issue. Lithium-sulfur batteries with the functional separator have a specific capacity of 1,126.4 mAh g-1 at 0.2 C, and the specific capacity can be remained up to 893.5 mAh g-1 after 100 cycles. Pouch Cells with high sulfur loading also showed a good electrochemical performance under a lean electrolyte condition of electrolyte/sulfur (E/S) = 3 µL mg-1.

17.
Nat Commun ; 11(1): 3050, 2020 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-32546760

RESUMEN

Single-crystal cathode materials for lithium-ion batteries have attracted increasing interest in providing greater capacity retention than their polycrystalline counterparts. However, after being cycled at high voltages, these single-crystal materials exhibit severe structural instability and capacity fade. Understanding how the surface structural changes determine the performance degradation over cycling is crucial, but remains elusive. Here, we investigate the correlation of the surface structure, internal strain, and capacity deterioration by using operando X-ray spectroscopy imaging and nano-tomography. We directly observe a close correlation between surface chemistry and phase distribution from homogeneity to heterogeneity, which induces heterogeneous internal strain within the particle and the resulting structural/performance degradation during cycling. We also discover that surface chemistry can significantly enhance the cyclic performance. Our modified process effectively regulates the performance fade issue of single-crystal cathode and provides new insights for improved design of high-capacity battery materials.

18.
Phys Rev Lett ; 124(18): 185701, 2020 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-32441959

RESUMEN

The mechanism of plasticity in nanostructured Si has been intensively studied over the past decade but still remains elusive. Here, we used in situ high-pressure radial x-ray diffraction to simultaneously monitor the deformation and structural evolution of a large number of randomly oriented Si nanoparticles (SiNPs). In contrast to the high-pressure ß-Sn phase dominated plasticity observed in large SiNPs (∼100 nm), small SiNPs (∼9 nm) display a high-pressure simple hexagonal phase dominated plasticity. Meanwhile, dislocation activity exists in all of the phases, but significantly weakens as the particle size decreases and only leads to subtle plasticity in the initial diamond cubic phase. Furthermore, texture simulations identify major active slip systems in all of the phases. These findings elucidate the origin of plasticity in nanostructured Si under stress and provide key guidance for the application of nanostructured Si.

19.
J Synchrotron Radiat ; 27(Pt 3): 746-752, 2020 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-32381777

RESUMEN

A versatile, compact heater designed at National Synchrotron Light Source-II for in situ X-ray nano-imaging in a full-field transmission X-ray microscope is presented. Heater design for nano-imaging is challenging, combining tight spatial constraints with stringent design requirements for the temperature range and stability. Finite-element modeling and analytical calculations were used to determine the heater design parameters. Performance tests demonstrated reliable and stable performance, including maintaining the exterior casing close to room temperature while the heater is operating at above 1100°C, a homogenous heating zone and small temperature fluctuations. Two scientific experiments are presented to demonstrate the heater capabilities: (i) in situ 3D nano-tomography including a study of metal dealloying in a liquid molten salt extreme environment, and (ii) a study of pore formation in icosahedral quasicrystals. The progression of structural changes in both studies were clearly resolved in 3D, showing that the new heater enables powerful capabilities to directly visualize and quantify 3D morphological evolution of materials under real conditions by X-ray nano-imaging at elevated temperature during synthesis, fabrication and operation processes. This heater design concept can be applied to other applications where a precise, compact heater design is required.

20.
Nat Commun ; 11(1): 2245, 2020 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-32382036

RESUMEN

Trees are used by animals, humans and machines to classify information and make decisions. Natural tree structures displayed by synapses of the brain involves potentiation and depression capable of branching and is essential for survival and learning. Demonstration of such features in synthetic matter is challenging due to the need to host a complex energy landscape capable of learning, memory and electrical interrogation. We report experimental realization of tree-like conductance states at room temperature in strongly correlated perovskite nickelates by modulating proton distribution under high speed electric pulses. This demonstration represents physical realization of ultrametric trees, a concept from number theory applied to the study of spin glasses in physics that inspired early neural network theory dating almost forty years ago. We apply the tree-like memory features in spiking neural networks to demonstrate high fidelity object recognition, and in future can open new directions for neuromorphic computing and artificial intelligence.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...