Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Food Chem ; 447: 139004, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-38492304

RESUMEN

To address the challenges of low recovery, prolonged extraction times, and environmental pollution caused by toxic solvents in traditional extraction methods, magnetic bead-enhanced deep eutectic solvent mechanochemical extraction was developed for extracting natural products from orange peels. The extraction efficiencies of deep eutectic solvents were experimentally evaluated, and theoretical methods were used to guide solvent selection. Choline chloride-ethylene glycol demonstrated the highest efficiency under the optimal extraction conditions: a molar ratio of 1:2, no water content, a solid-liquid ratio of 0.08 g/mL, and an extraction time of 60 s. The synergy between the deep eutectic solvent and magnetic bead-enhanced the mechanochemical extraction efficiencies. The study also examined the effects of different magnetic bead types and orange peel powder particle sizes on extraction efficiency, finding that a 0.11 mm particle size combined with CIP@SiO2 yielded the best results. Overall, this study holds promise as an environmentally friendly and efficient extraction method.


Asunto(s)
Citrus sinensis , Disolventes Eutécticos Profundos , Dióxido de Silicio , Solventes/química , Fenómenos Magnéticos
2.
Int J Biol Macromol ; 260(Pt 2): 129677, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38266831

RESUMEN

In this study, a simple and eco-friendly method was used to treat alkaline lignin with an acidic deep eutectic solvent (DES) to obtain regenerated lignin for the efficient adsorption of pollutant dyes from aqueous environment. Based on the yield and adsorption capacity of the sorbent for these dyes, conditions such as the type and concentration of DES component, solid-to-liquid ratio, reaction time, and temperature were optimized. By characterizing and comparing alkali lignin with regenerated lignin, a series of reactions were demonstrated to occur during the DES treatment process. The performance and mechanism of methylene blue and rhodamine B adsorption on regenerated lignin were studied systematically, and the maximum adsorbed amounts were 348.29 and 551.05 mg/g at 323 K, respectively. This study provides a new strategy for the green preparation of functionalized lignin and its use in the water pollutant treatment.


Asunto(s)
Contaminantes Ambientales , Contaminantes Químicos del Agua , Lignina , Agua , Colorantes , Disolventes Eutécticos Profundos , Adsorción , Contaminantes Químicos del Agua/análisis , Solventes
3.
Int J Biol Macromol ; 253(Pt 6): 127394, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37832618

RESUMEN

A carbon-rich material (DESysChar) was prepared from polysaccharide within a deep eutectic system (DESys) containing oxalic acid, and systematically characterized using various analytical techniques. The investigation of reaction mechanism revealed concurrent dehydration and etherification processes. This study commenced with the extraction of plant polysaccharide using the DESys-based mechanochemical extraction method from Dendrobium officinale. Subsequently, the DESys method was used to carbonize the extracted Dendrobium officinale polysaccharide and produce DESysChar. DESysChar was then used for the adsorption and determination of pollutants in water. This study represents a significant advancement in eco-friendly material synthesis, enabling the low-temperature (120 °C) carbonization of plant-derived polysaccharides, thereby reducing energy consumption and environmental impact. The effective adsorption of methylene blue by DESysChar underscores its potential in environmental remediation. This study presents a more responsible and efficient approach to polysaccharide extraction and carbonization, addressing environmental concerns. Embracing the 4S workflow (involving Sustainable raw materials converted into Sustainable degradable products, by using Sustainable technology throughout the process to create a Sustainable environment) promotes sustainability in material development, laying the foundation for future eco-friendly practices in various industries. In summary, this study propels sustainable polysaccharide development for widespread use.


Asunto(s)
Dendrobium , Dendrobium/química , Polisacáridos/química
4.
Anal Bioanal Chem ; 415(18): 4343-4352, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36651975

RESUMEN

To systematically study the influence of host-guest interactions on the analytical performance of direct analysis in real time mass spectrometry (DART-MS), the interactions between cyclodextrins (CDs) and different Sudan dyes were investigated. The results showed that the host-guest interaction between CDs and Sudan dyes did not affect qualitative analysis of the target compounds, but led to a lower signal intensity for Sudan dyes, thus affecting quantitative analysis of the target compounds. The stronger the host-guest interaction, the weaker the signal intensity of target compound on DART-MS. The results also show that both in solution and in solid-phase microextraction (SPME), the addition of organic solvents can weaken the host-guest interaction between CDs and Sudan dyes, thus improving the signal intensity in DART-MS. In SPME, adding organic solvents has a certain practical value and can improve the efficiency of Sudan dye analysis. This study suggests that appropriate sample pretreatment is needed to weaken noncovalent interactions prior to DART-MS analysis to obtain more accurate quantitative results. The data provide some insight into the effects of other noncovalent interactions on the efficiency of DART-MS as an analytical tool, as well as the potential to study intermolecular interactions with DART-MS.


Asunto(s)
Colorantes , Microextracción en Fase Sólida , Espectrometría de Masas/métodos , Microextracción en Fase Sólida/métodos , Solventes/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA