Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int Immunopharmacol ; 129: 111628, 2024 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-38320351

RESUMEN

BACKGROUND: Liver cancer, particularly hepatocellular carcinoma (HCC), is characterized by a high mortality rate, attributed primarily to the establishment of an immunosuppressive microenvironment. Within this context, we aimed to elucidate the pivotal role of eukaryotic elongation factor 2 kinase (eEF2K) in orchestrating the infiltration and activation of natural killer (NK) cells within the HCC tumor microenvironment. By shedding light on the immunomodulatory mechanisms at play, our findings should clarify HCC pathogenesis and help identify potential therapeutic intervention venues. METHODS: We performed a comprehensive bioinformatics analysis to determine the functions of eEF2K in the context of HCC. We initially used paired tumor and adjacent normal tissue samples from patients with HCC to measure eEF2K expression and its correlation with prognosis. Subsequently, we enrolled a cohort of patients with HCC undergoing immunotherapy to examine the ability of eEF2K to predict treatment efficacy. To delve deeper into the mechanistic aspects, we established an eEF2K-knockout cell line using CRISPR/Cas9 gene editing. This step was crucial for verifying activation of the cGAS-STING pathway and the subsequent secretion of cytokines. To further elucidate the role of eEF2K in NK cell function, we applied siRNA-based techniques to effectively suppress eEF2K expression in vitro. For in vivo validation, we developed a tumor-bearing mouse model that enabled us to compare the infiltration and activation of NK cells within the tumor microenvironment following various treatment strategies. RESULTS: We detected elevated eEF2K expression within HCC tissues, and this was correlated with an unfavorable prognosis (30.84 vs. 20.99 months, P = 0.033). In addition, co-culturing eEF2K-knockout HepG2 cells with dendritic cells led to activation of the cGAS-STING pathway and a subsequent increase in the secretion of IL-2 and CXCL9. Moreover, inhibiting eEF2K resulted in notable NK cell proliferation along with apoptosis reduction. Remarkably, after combining NH125 and PD-1 treatments, we found a significant increase in NK cell infiltration within HCC tumors in our murine model. Our flow cytometry analysis revealed reduced NKG2A expression and elevated NKG2D expression and secretion of granzyme B, TNF-α, and IFN-γ in NK cells. Immunohistochemical examination confirmed no evidence of damage to vital organs in the mice treated with the combination therapy. Additionally, we noted higher levels of glutathione peroxidase and lipid peroxidation in the peripheral blood serum of the treated mice. CONCLUSION: Targeted eEF2K blockade may result in cGAS-STING pathway activation, leading to enhanced infiltration and activity of NK cells within HCC tumors. The synergistic effect achieved by combining an eEF2K inhibitor with PD-1 antibody therapy represents a novel and promising approach for the treatment of HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animales , Humanos , Ratones , Carcinoma Hepatocelular/tratamiento farmacológico , Quinasa del Factor 2 de Elongación/genética , Quinasa del Factor 2 de Elongación/metabolismo , Células Asesinas Naturales , Neoplasias Hepáticas/tratamiento farmacológico , Receptor de Muerte Celular Programada 1/metabolismo , Microambiente Tumoral
2.
Biomol Biomed ; 24(2): 323-336, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-37540586

RESUMEN

Globally, pancreatic cancer is recognized as one of the deadliest malignancies that lacks effective targeted therapies. This study aims to explore the role of cyclin I-like protein (CCNI2), a homolog of cyclin I (CCNI), in the progression of pancreatic cancer, thereby providing a theoretical basis for its treatment. Firstly, the expression of CCNI2 in pancreatic cancer tissues was determined through immunohistochemical staining. The biological role of CCNI2 in pancreatic cancer cells was further assessed using both in vitro and in vivo loss/gain-of-function assays. Our data revealed that CCNI2 expression was abnormally elevated in pancreatic cancer, and clinically, increased CCNI2 expression generally correlated with reduced overall survival. Functionally, CCNI2 contributed to the malignant progression of pancreatic cancer by promoting the proliferation and migration of tumor cells. Consistently, in vivo experiments verified that CCNI2 knockdown impaired the tumorigenic ability of pancreatic cancer cells. Moreover, the addition of phosphatidylinositol 3-kinase (PI3K) inhibitors could partially reverse the promoting effect of CCNI2 on the malignant phenotypes of pancreatic cancer cells. CCNI2 promoted pancreatic cancer through PI3K/protein kinase B (AKT) signaling pathway, indicating its potential as a prognostic marker and therapeutic target for pancreatic cancer.


Asunto(s)
Neoplasias Pancreáticas , Proteínas Proto-Oncogénicas c-akt , Humanos , Proteínas Proto-Oncogénicas c-akt/genética , Fosfatidilinositol 3-Quinasa/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Ciclina I/metabolismo , Proliferación Celular/genética , Transducción de Señal , Neoplasias Pancreáticas/genética
3.
Sensors (Basel) ; 23(22)2023 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-38005646

RESUMEN

Adaptive Optics (AO) technology is an effective means to compensate for wavefront distortion, but its inherent delay error will cause the compensation wavefront on the deformable mirror (DM) to lag behind the changes in the distorted wavefront. Especially when the change in the wavefront is higher than the Shack-Hartmann wavefront sensor (SHWS) sampling frequency, the multi-frame delay will seriously limit its correction performance. In this paper, a highly stable AO prediction network based on deep learning is proposed, which only uses 10 frames of prior wavefront information to obtain high-stability and high-precision open-loop predicted slopes for the next six frames. The simulation results under various distortion intensities show that the prediction accuracy of six frames decreases by no more than 15%, and the experimental results also verify that the open-loop correction accuracy of our proposed method under the sampling frequency of 500 Hz is better than that of the traditional non-predicted method under 1000 Hz.

4.
Curr Med Sci ; 43(5): 1013-1022, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37837571

RESUMEN

OBJECTIVE: Compared to portal vein ligation (PVL), simultaneous bile duct and portal vein ligation (BPL) can significantly enhance hypertrophy of the intact liver. This study aimed to investigate whether BPL could improve survival after extended hepatectomy independently of an increased remnant liver. METHODS: We adopted rat models of 90% BPL or 90% PVL. To investigate the role of bile acids (BAs) the BA pools in the PVL and BPL groups were altered by the diet. Staged resection preserving 10% of the estimated liver weight was performed 3 days after BPL; PVL; or sham operation. Histology, canalicular network (CN) continuity; and hepatocyte polarity were evaluated. RESULTS: At 3 days after BPL; PVL; or sham operation when the volumetric difference of the intended liver remained insignificant, the survival rates after extended hepatectomy were 86.7%, 47%, and 23.3%, respectively (P<0.01). BPL induced faster restoration of canalicular integrity along with an intensive but transient BA overload. Staged hepatectomy after BPL shortened the duration of the bile CN disturbance and limited BA retention. Decreasing the BA pools in the rats that underwent BPL could compromise these effects, whereas increasing the BA pools of rats that underwent PVL could induce similar effects. The changes in CN restoration were associated with activation of LKB1. CONCLUSION: In addition to increasing the future remnant liver, BPL shortened the duration of the spatial disturbance of the CN and could significantly improve the tolerance of the hypertrophied liver to staged resection. BPL may be a safe and efficient future option for patients with an insufficient remnant liver.


Asunto(s)
Hepatectomía , Vena Porta , Humanos , Ratas , Animales , Hepatectomía/efectos adversos , Vena Porta/cirugía , Ácidos y Sales Biliares , Hígado/patología , Conductos Biliares/cirugía
5.
Opt Lett ; 48(17): 4476-4479, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37656532

RESUMEN

This Letter introduces the idea of unsupervised learning into object-independent wavefront sensing for the first time, to the best of our knowledge, which can achieve fast phase recovery of arbitrary objects without labels. First, a fine feature extraction method which only depends on the wavefront aberrations is proposed. Then, a lightweight neural network and an optical feature system are combined to form an unsupervised learning model, and the neural network is promoted to be well trained by reversely outputting fine features. Simulation results prove that the proposed method can effectively overcome the aberrations (static or variable) existing in the optical system and achieve wavefront sensing of different objects with high precision and efficiency.

6.
Gastroenterology ; 165(3): 746-761.e16, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37263311

RESUMEN

BACKGROUND & AIMS: Liver fibrosis is an intrinsic wound-healing response to chronic injury and the major cause of liver-related morbidity and mortality worldwide. However, no effective diagnostic or therapeutic strategies are available, owing to its poorly characterized molecular etiology. We aimed to elucidate the mechanisms underlying liver fibrogenesis. METHODS: We performed a quantitative proteomic analysis of clinical fibrotic liver samples to identify dysregulated proteins. Further analyses were performed on the sera of 164 patients with liver fibrosis. Two fibrosis mouse models and several biochemical experiments were used to elucidate liver fibrogenesis. RESULTS: We identified cathepsin S (CTSS) up-regulation as a central node for extracellular matrix remodeling in the human fibrotic liver by proteomic screening. Increased serum CTSS levels efficiently predicted liver fibrosis, even at an early stage. Secreted CTSS cleaved collagen 18A1 at its C-terminus, releasing endostatin peptide, which directly bound to and activated hepatic stellate cells via integrin α5ß1 signaling, whereas genetic ablation of Ctss remarkably suppressed liver fibrogenesis via endostatin reduction in vivo. Further studies identified macrophages as the main source of hepatic CTSS, and splenectomy effectively attenuated macrophage infiltration and CTSS expression in the fibrotic liver. Pharmacologic inhibition of CTSS ameliorated liver fibrosis progression in the mouse models. CONCLUSIONS: CTSS functions as a novel profibrotic factor by remodeling extracellular matrix proteins and may represent a promising target for the diagnosis and treatment of liver fibrosis.


Asunto(s)
Endostatinas , Proteómica , Ratones , Animales , Humanos , Endostatinas/metabolismo , Endostatinas/farmacología , Hígado/metabolismo , Cirrosis Hepática/metabolismo , Fibrosis , Modelos Animales de Enfermedad , Células Estrelladas Hepáticas/metabolismo , Matriz Extracelular , Macrófagos/metabolismo
7.
Front Immunol ; 14: 1166052, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37077914

RESUMEN

Objectives: The exhausted CD8+T (Tex) cells are a unique cell population of activated T cells that emerges in response to persistent viral infection or tumor antigens. Tex cells showed the characteristics of aging cells, including weakened self-renewal ability, effector function inhibition, sustained high expression of inhibitory receptors including PD-1, TIGIT, TIM-3, and LAG-3, and always accompanied by metabolic and epigenetic reprogramming. Tex cells are getting more and more attention in researching immune-related diseases and tumor immunotherapy. However, studies on Tex-related models for tumor prognosis are still lacking. We hope to establish a risk model based on Tex-related genes for HCC prognosis. Methods: Tex-related GEO datasets from different pathologic factors (chronic HBV, chronic HCV, and telomere shortening) were analyzed respectively to acquire differentially expressed genes (DEGs) by the 'limma' package of R. Genes with at least one intersection were incorporated into Tex-related gene set. GO, KEGG, and GSEA enrichment analyses were produced. Hub genes and the PPI network were established and visualized by the STRING website and Cytoscape software. Transcription factors and targeting small molecules were predicted by the TRUST and CLUE websites. The Tex-related HCC prognostic model was built by Cox regression and verified based on different datasets. Tumor immune dysfunction and exclusion (TIDE) and SubMap algorithms tested immunotherapy sensitivity. Finally, qRT-PCR and Flow Cytometry was used to confirm the bioinformatic results. Results: Hub genes such as AKT1, CDC6, TNF and their upstream transcription factor ILF3, Regulatory factor X-associated protein, STAT3, JUN, and RELA/NFKB1 were identified as potential motivators for Tex. Tex-related genes SLC16A11, CACYBP, HSF2, and ATG10 built the HCC prognostic model and helped with Immunotherapy sensitivity prediction. Conclusion: Our study demonstrated that Tex-related genes might provide accurate prediction for HCC patients in clinical decision-making, prognostic assessment, and immunotherapy. In addition, targeting the hub genes or transcription factors may help to reverse T cell function and enhance the effect of tumor immunotherapy.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Pronóstico , Linfocitos T CD8-positivos , Factores de Transcripción/metabolismo , Proteínas de Unión al Calcio/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo
8.
Front Bioeng Biotechnol ; 11: 1135997, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36911196

RESUMEN

Objectives An acute injury is often accompanied by tissue regeneration. In this process, epithelial cells show a tendency of cell proliferation under the induction of injury stress, inflammatory factors, and other factors, accompanied by a temporary decline of cellular function. Regulating this regenerative process and avoiding chronic injury is a concern of regenerative medicine. The severe coronavirus disease 2019 (COVID-19) has posed a significant threat to people's health caused by the coronavirus. Acute liver failure (ALF) is a clinical syndrome resulting from rapid liver dysfunction with a fatal outcome. We hope to analyze the two diseases together to find a way for acute failure treatment. Methods COVID-19 dataset (GSE180226) and ALF dataset (GSE38941) were downloaded from the Gene Expression Omnibus (GEO) database, and the "Deseq2" package and "limma" package were used to identify differentially expressed genes (DEGs). Common DEGs were used for hub genes exploration, Protein-Protein Interaction (PPI) network construction, Gene Ontology (GO) functional enrichment, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment. The real-time reverse transcriptase-polymerase chain reaction (RT-qPCR) was used to verify the role of hub genes in liver regeneration during in vitro expansion of liver cells and a CCl4-induced ALF mice model. Results: The common gene analysis of the COVID-19 and ALF databases revealed 15 hub genes from 418 common DEGs. These hub genes, including CDC20, were related to cell proliferation and mitosis regulation, reflecting the consistent tissue regeneration change after the injury. Furthermore, hub genes were verified in vitro expansion of liver cells and in vivo ALF model. On this basis, the potential therapeutic small molecule of ALF was found by targeting the hub gene CDC20. Conclusion We have identified hub genes for epithelial cell regeneration under acute injury conditions and explored a new small molecule Apcin for liver function maintenance and ALF treatment. These findings may provide new approaches and ideas for treating COVID-19 patients with ALF.

9.
Biochim Biophys Acta Gene Regul Mech ; 1866(2): 194928, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36948453

RESUMEN

Liver fibrosis is characterized by excessive synthesis and deposition of extracellular matrix (ECM) in liver tissues. However, it still has been lacking of early detection and diagnosis methods. The collagen hybridizing peptide (CHP) is a novel synthetic peptide that enables detection of collagen damage and tissue remodeling. Here, we showed that obvious CHP-positive staining could be detected in the liver while given CCl4 for only 3 days, which was significantly enhanced while given CCl4 for 7 days. However, H&E staining showed no significant changes in fibrous tissue, and sirius red-positive staining could only be observed while given CCl4 for 14 days. Moreover, CHP-positive staining enhanced initially at portal area which further extended into the hepatic lobule, which was increased more significantly than sirius red-positive staining in the model of 10 and 14 days. Further proteomic analysis of CHP-positive staining revealed that pathways associated with ECM remodeling were significantly increased, while retinol metabolism was downregulated. Meanwhile, proteins enriched in cellular gene transcription and signal transduction involved in fibrogenesis were also upregulated, suggesting that fibrosis occurred in CHP-positive staining. Our study provided evidence that CHP could detect the collagen damage in liver, which might be an efficient indicator for the diagnosis of liver fibrosis at a very early stage.


Asunto(s)
Cirrosis Hepática , Proteómica , Humanos , Cirrosis Hepática/diagnóstico , Cirrosis Hepática/metabolismo , Colágeno/química , Péptidos/química
10.
Exp Ther Med ; 24(6): 739, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36478886

RESUMEN

Due to the lack of a suitable model, research on biliary biology is far behind that on other organs. A mouse model of common bile duct (CBD) dilation (BDD) was first established and compared with CBD ligation mice (BDL). Then, in a transplantation experiment, the dilated CBD of recipient BDD mice was injured by making an elliptical incision and repaired by transplanting a bile duct patch from donor BDD mice. Biochemical and histological changes were analyzed and cell proliferation of the bile duct grafts was determined. Slightly dilated and unblocked CBD with a diameter of 2.89±0.76 mm was obtained in BDD mice, while the CBD diameter was 0.51±0.08 mm in the Sham group and 4.71±0.64 mm in the BDL group on day 14 after surgery. The liver damage was very mild in BDD mice compared with BDL mice, proving that the BDD model could be further used for bile duct transplantation. By cross transplanting the bile duct patch from enhanced green fluorescence protein and wild-type BDD mice, it was found that the CBD injury was well repaired and the cells of the bile duct patch were completely replaced by recipient-derived cells at 12 week after the repair operation. α Smooth muscle actin, Ki67 and cytokeratin 19 immunofluorescence staining showed that the proliferation of bile duct epithelial cells and abundant active fibroblasts were found within the bile duct patch during the regeneration process. Therefore, a reliable new mouse model of bile duct injury and repair was successfully established and can be used in the study of biliary repair mechanisms and tissue engineering of biliary ducts.

11.
Front Immunol ; 13: 1052768, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36405738

RESUMEN

As a regulatory subunit of cyclin kinase, CKS1B promotes cancer development and is associated with poor prognosis in multiple cancer patients. However, the intrinsic role of CKS1B in pancreatic cancer remains elusive. In our research, CKS1B expression in pancreatic tumor tissue was higher than that in normal tissue by TCGA, Oncomine and CPTAC databases analysis. Similar result was verified in our center tissues by qRT-PCR. CKS1B expression was closely relevant to histologic grading, prognosis, and TMB. GSEA showed that CKS1B mainly participated in the regulation of autophagy and T cell receptor signaling pathway. Furthermore, CIBERSORT analysis showed that there was a strong correlation between CKS1B expression and tumor immune cells infiltration. Drug sensitivity analysis showed that patients with high CKS1B expression appeared to be more sensitive to gemcitabine, 5-fluorouracil, and paclitaxel. We then investigated cell viability and migratory ability by CCK8 and transwell assay, respectively. Results indicated that CKS1B knockdown by short hairpin RNA significantly reduced pancreatic cancer cell viability and invasion via regulating PD-L1 expression. In conclusion, our research further demonstrates the role of CKS1B in pancreatic cancer and the signaling pathways involved. The association of CKS1B with immune infiltration and immune checkpoint may provide a new direction for immunotherapy of pancreatic cancer.


Asunto(s)
Quinasas CDC2-CDC28 , Neoplasias Pancreáticas , Humanos , Pronóstico , Regulación Neoplásica de la Expresión Génica , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Inmunoterapia , Factores Inmunológicos , Biomarcadores , Quinasas CDC2-CDC28/genética , Neoplasias Pancreáticas
12.
Ann Transl Med ; 10(8): 468, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35571402

RESUMEN

Background: Associating liver partition and portal vein ligation for staged hepatectomy (ALPPS) was introduced in 2007. The current study explored the mechanisms of rapid liver hypertrophy after ALPPS in cirrhotic rats. Methods: A cirrhotic rat model was constructed and portal vein ligation (PVL) or ALPPS treatments were administered. The liver hyperplasia rate of the rats was calculated, and hepatic function was evaluated using biochemical factors and the indocyanine green excretion test. Subsequently, enzyme-linked immunosorbent assay (ELISA), immunohistochemistry, and hematoxylin and eosin (HE) staining were performed to determine the degree of liver regeneration. Differentially expressed genes during the rapid liver hypertrophy were detected by bioinformatics analysis, followed verification using real-time quantitative polymerase chain reaction (RT-qPCR) and immunohistochemistry. Results: The body weight of rats that underwent PVL and ALPPS changed during the first 1-4 days postoperatively, and the alterations were more pronounced in rats receiving ALPPS. The recovery of body weight in cirrhotic rats was slower than that in normal rats. The levels of biochemical factors and the indocyanine green retention rate increased 1 day after PVL and ALPPS, and then decreased gradually. PVL and ALPPS elevated the levels of cytokines, inflammatory factors, and proliferating cell nuclear antigen (PCNA) in rats at 1 day postoperatively. HE observation of rat liver condition showed that rats recovered faster within the first 4 days postoperatively. ALPPS surgery resulted in a significant downregulation of matrix metalloproteinase (MMP)2/9 expression in cirrhotic rats at postoperative day 4. Conclusions: Liver function was partially recovered in cirrhotic rats after ALPPS, and the underlying mechanisms may involve PCNA and MMP2/9.

13.
Front Cell Dev Biol ; 10: 792676, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35295858

RESUMEN

Recently, immunotherapy combined with targeted therapy has significantly prolonged the survival time and improved the quality of life of patients with hepatocellular carcinoma (HCC). However, HCC treatment remains challenging due to the high heterogeneity of this malignancy. Sorafenib, the first-line drug for the treatment of HCC, can inhibit the progression of HCC by inducing ferroptosis. Ferroptosis is associated with the formation of an immunosuppressive microenvironment in tumours. Moreover, long non-coding RNAs (lncRNAs) are strongly associated with ferroptosis and the progression of HCC. Discovery of ferroptosis-related lncRNAs (FR-lncRNAs) is critical for predicting prognosis and the effectiveness of immunotherapy and targeted therapies to improve the quality and duration of survival of HCC patients. Herein, all cases from The Cancer Genome Atlas (TCGA) database were divided into training and testing groups at a 6:4 ratio to construct and validate the lncRNA signatures. Least Absolute Shrinkage and Selection Operator (LASSO) regression and Cox regression analyses were used to screen the six FR-lncRNAs (including MKLN1-AS, LINC01224, LNCSRLR, LINC01063, PRRT3-AS1, and POLH-AS1). Kaplan-Meier (K-M) and receiver operating characteristic (ROC) curve analyses demonstrated the optimal predictive prognostic ability of the signature. Furthermore, a nomogram indicated favourable discrimination and consistency. For further validation, we used real-time quantitative polymerase chain reaction (qRT-PCR) to analyse the expression of LNCSRLR, LINC01063, PRRT3-AS1, and POLH-AS1 in HCC tissues. Moreover, we determined the ability of the signature to predict the effects of immunotherapy and targeted therapy in patients with HCC. Gene set enrichment analysis (GSEA) and somatic mutation analysis showed that ferroptosis-related pathways, immune-related pathways, and TP53 mutations may be strongly associated with the overall survival (OS) outcomes of HCC patients. Overall, our study suggests that a new risk model of six FR-lncRNAs has a significant prognostic value for HCC and that it could contribute to precise and individualised HCC treatment.

14.
Cancer Cell Int ; 21(1): 657, 2021 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-34876138

RESUMEN

BACKGROUND: Intrahepatic cholangiocarcinoma (ICC) is a fatal primary liver cancer, and its long-term survival rate remains poor. RNA-binding proteins (RBPs) play an important role in critical cellular processes, failure of any one or more processes can lead to the development of multiple cancers. This study aimed to explore pivotal biomarkers and corresponding mechanisms to predict the prognosis of patients with ICC. METHODS: The transcriptomic and clinical information of patients were collected from The Cancer Genome Atlas and Gene Expression Omnibus databases. Bioinformatic methods were used to identify survival-related and differentially-expressed biomarkers. Quantitative real-time PCR (qRT-PCR) and immunohistochemistry were used to detect the expression levels of key biomarkers in independent real-world cohorts. Subsequently, a prognostic signature was constructed that effectively distinguished patients in the high- and low-risk groups. Independent prognosis analysis was used to verify the signature's independent predictive capabilities, and two nomograms were developed to predict survival. RESULTS: PIWIL4 and SUPT5H were identified and considered as pivotal biomarkers, and the same expression trends of upregulation in ICC were also validated via qRT-PCR and immunohistochemistry in the separate real-world sample cohorts. The prognostic signature showed good predictive capabilities according to the area under the curve. The correlation of the biomarkers with the tumour microenvironment suggested that the high riskScore was positively related to the enrichment of resting natural killer cells and activated memory CD4 + T cells. CONCLUSION: In the present study, we demonstrated that PIWIL4 and SUPT5H could be used as novel prognostic biomarkers to develop a prognostic signature. This study provides potential biomarkers of prognostic value for patients with intrahepatic cholangiocarcinoma.

15.
Oncol Lett ; 19(2): 1310-1316, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31966062

RESUMEN

The expression of miR-101 in carcinoma and para-carcinoma tissues of patients with liver cancer was studied. The carcinoma and para-carcinoma tissues of 67 patients with liver cancer treated in Chinese PLA General Hospital were collected, and the expression of miR-101 in carcinoma and para-carcinoma tissues was detected via reverse transcription-polymerase chain reaction (RT-PCR). The liver cancer HepG2 cell line was transfected with miR-101 mimics. Moreover, the influence of miR-101 overexpression on the proliferation of liver cancer cells was detected via Cell Counting Kit-8 assay and colony formation assay. The proportion of Ki67-positive cells in the control group (NC group) and miR-101 overexpression group (miR-101 mimics group) was detected via Ki67 staining. The proportions of cells were detected via flow cytometry, and the predicted target gene Zeste2 enhancer (EZH2) was further verified via luciferase reporter gene assay and western blotting. The miR-101 overexpression significantly inhibited the colony formation and proliferation ability of liver cancer cells (P<0.05). The proportion of Ki67-positive cells in liver cancer cells was lower in miR-101 mimics group (P<0.05). The proportion of cells in G0/G1 phase was increased in miR-101 mimics group compared with that in NC group (P<0.05). The extracellular signal-regulated kinase (ERK)1/2 phosphorylation level in liver cancer cells was obviously suppressed in miR-101 mimics group (P<0.05). Therefore, the expression level of miR-101 declines in liver cancer tissues, and the miR-101 overexpression can inhibit the proliferation of liver cancer cells. The inhibitory effect of miR-101 on the proliferation of liver cancer cells may be related to its inhibition on the mitogen-activated protein kinase (MAPK)/ERK signaling pathway, and the inhibition on the MAPK/ERK may be mediated by the targeted inhibition of miR-101 on EZH2.

16.
Med Sci Monit ; 25: 6755-6766, 2019 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-31494663

RESUMEN

BACKGROUND Matricellular proteins of the extracellular matrix (ECM) include tenascin-C (TNC) and cellular communication network factor 3 (CCN3). This study aimed to investigate the role of TNC and CCN3 as prognostic factors for post hepatectomy liver failure (PHLF) in a rat model of partial hepatectomy and 50 patients following partial hepatectomy. MATERIAL AND METHODS Sprague-Dawley rats underwent 85% (n=53) or 90% hepatectomy (n=53) in the partial hepatectomy (PHx) model. TNC and CCN3 mRNA expression in residual liver tissue was evaluated using quantitative reverse transcription-polymerase chain reaction (qRT-PCR), and enzyme-linked immunoassay (ELISA) determined the serum levels of TNC and CCN3. In 50 patients who underwent partial hepatectomy, TNC and CCN3 serum levels were measured on postoperative day 1 and day 3. RESULTS In the rat partial hepatectomy model, mRNA and serum levels of TNC and CCN3 were significantly increased within the first 24 h, and were higher in the 90% PHx group compared with the 85% PHx group. Fifty patients who underwent partial hepatectomy, included patients with PHLF (n=12) and patients without PHLF (n=38). Multivariate analysis confirmed that serum levels on postoperative day 3 TNChigh+CCN3high was a significant predictor of PHLF, which was associated with more than twice the risk of severe morbidity when compared with the low-risk patients (80% vs. 30%) and a significantly longer hospital stay (17 days vs. 8 days). CONCLUSIONS Further studies are needed to evaluate the potential role of the matricellular proteins, TNC and CCN3 as early clinical predictors for PHLF.


Asunto(s)
Hepatectomía/efectos adversos , Fallo Hepático/etiología , Proteína Hiperexpresada del Nefroblastoma/metabolismo , Tenascina/metabolismo , Adulto , Anciano , Animales , Área Bajo la Curva , Bilirrubina/sangre , Modelos Animales de Enfermedad , Femenino , Humanos , Tiempo de Internación , Fallo Hepático/sangre , Fallo Hepático/genética , Modelos Logísticos , Masculino , Persona de Mediana Edad , Morbilidad , Análisis Multivariante , Proteína Hiperexpresada del Nefroblastoma/sangre , Proteína Hiperexpresada del Nefroblastoma/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Curva ROC , Ratas Sprague-Dawley , Factores de Riesgo , Análisis de Supervivencia , Tenascina/sangre , Tenascina/genética
17.
Exp Ther Med ; 16(3): 1910-1918, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30186418

RESUMEN

In certain cases, major hepatectomy is essential and inevitable in patients with hilar cholangiocarcinoma and obstructive jaundice (OJ). The current study was designed to evaluate effects of a novel method of portal blood occlusion, where the portal vein was occluded (OPV) and the hepatic artery flow was preserved in rats with OJ that underwent partial hepatectomy. OJ was induced in rats by ligation of the common bile duct for 7 days. Subsequently, OJ rats underwent hepatectomy removing 76% of the liver following occlusion of the portal triad (OPT), OPV or without portal blood occlusion. Liver blood flow (LBF), liver damage and regeneration were assessed. The safety limit for the duration of liver ischemia was 20 min for OPT and 40 min for OPV in rats with OJ. OPT and OPV methods resulted in significantly decreased microvascular LBF in rats with OJ from 529.53±91.55 laser speckle perfusion units (LSPU) in the control to 136.89±32.32 and 183.99±49.25 LSPU, respectively. Liver damage was assessed analyzing levels of serum alanine transaminase and direct bilirubin, determining interleukin-1ß and tumor necrosis factor-α expression and histological examination. It was demonstrated that liver damage and caspase-3 and -9 expression in the liver were substantially reduced in the OPV group compared with the OPT group. In addition, the OPV method significantly improved liver regeneration in OJ rats, as indicated by increased rates of liver regeneration and expression of proliferating cell nuclear antigen and Ki-67 compared with the OPT group. Therefore, the OPV method may prolong the duration of portal blood occlusion, reduce liver injury and improve liver regeneration by preserving hepatic arterial flow during portal blood control in rats with OJ undergoing partial hepatectomy. The current study describes a novel technique, which may be applied in liver surgery in patients with complex jaundice.

18.
Sci Rep ; 8(1): 8699, 2018 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-29880798

RESUMEN

This study seeks to compare the impact of selective partial portal vein ligation (PPVL) or the combination of simultaneous hepatic artery ligation (PPVAL) with in situ splitting (ISS) on liver regeneration and injury. Rats were randomized into three groups; namely: selective PVL, PPVL + ISS and PPVAL + ISS. The changes in hepatic hemodynamics, liver regeneration and hepatocytic injury were examined. Blood flow to the left portal branch and the microcirculation of the left median lobe after PPVL or PPVAL was significantly reduced. Liver regeneration of PPVAL + ISS group was more pronounced than that in the PPVL + ISS and PVL groups at 48 and 72 hours as well as 7 d postoperatively. The serum biochemical markers and histopathological examination demonstrated reduced levels of liver injury in the PPVL + ISS group. Injury to hepatocytes was more pronounced with PPVAL + ISS than PVL. HGF, TNF-α and IL-6 expression in the regenerated lobes in both PPVAL + ISS and PPVL + ISS groups increased significantly when compared to the PVL group. We demonstrated that both PPVL + ISS and PPVAL + ISS were effective and feasible means of inducing remnant liver hypertrophy and could serve as a rapid clinical application for qualified patients.


Asunto(s)
Arteria Hepática/cirugía , Hepatocitos/metabolismo , Regeneración Hepática , Hígado/metabolismo , Microcirculación , Vena Porta/cirugía , Animales , Hepatocitos/patología , Interleucina-6/biosíntesis , Ligadura , Hígado/patología , Masculino , Ratas , Ratas Sprague-Dawley , Factor de Necrosis Tumoral alfa/biosíntesis
19.
Sci Rep ; 5: 14406, 2015 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-26400669

RESUMEN

Hepatic ischaemia/reperfusion (I/R) injury is of primary concern during liver surgery. We propose a new approach for preserving low liver blood perfusion during hepatectomy either by occlusion of the portal vein (OPV) while preserving hepatic artery flow or occlusion of the hepatic artery while limiting portal vein (LPV) flow to reduce I/R injury. The effects of this approach on liver I/R injury were investigated. Rats were randomly assigned into 4 groups: sham operation, occlusion of the portal triad (OPT), OPV and LPV. The 7-day survival rate was significantly improved in the OPV and LPV groups compared with the OPT group. Microcirculatory liver blood flow recovered rapidly after reperfusion in the OPV and LPV groups but decreased further in the OPT group. The OPV and LPV groups also showed much lower ALT and AST levels, Suzuki scores, inflammatory gene expression levels, and parenchymal necrosis compared with the OPT group. An imbalance between the expression of vasoconstriction and vasodilation genes was observed in the OPT group but not in the OPV or LPV group. Therefore, preserving low liver blood perfusion by either the OPV or LPV methods during liver surgery is very effective for preventing hepatic microcirculatory dysfunction and hepatocyte injury.


Asunto(s)
Hepatopatías/etiología , Hepatopatías/prevención & control , Hígado/irrigación sanguínea , Hígado/cirugía , Microcirculación , Flujo Sanguíneo Regional , Daño por Reperfusión/etiología , Daño por Reperfusión/prevención & control , Animales , Citocinas/sangre , Citocinas/metabolismo , Diagnóstico por Imagen/métodos , Modelos Animales de Enfermedad , Células Endoteliales/metabolismo , Expresión Génica , Hepatectomía/métodos , Arteria Hepática , Hepatocitos , Mediadores de Inflamación/metabolismo , Hígado/patología , Hepatopatías/diagnóstico , Hepatopatías/patología , Pruebas de Función Hepática , Masculino , Vena Porta , Ratas , Regeneración , Daño por Reperfusión/diagnóstico , Daño por Reperfusión/patología , Oclusión Terapéutica/métodos , Factores de Tiempo
20.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao ; 37(2): 195-200, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25936708

RESUMEN

OBJECTIVE: To establish a stable and modified mouse model of brain death (BD) and to share our experiences in BD induction and maintenance. METHODS: Totally 35 C57BL/6 male mice were randomized into BD group (n=25) or sham control group (n=10). BD was induced by inserting a 2F Fogarty catheter connected to a syringe pump after trepanation of the left frontoparietal area and injecting volume at the speed of 6 µl/min until spontaneous respiration ceased. BD was diagnosed by electroencephalogram, apnea testing,as well as testing of brain stem reflexes. Mechanical ventilation was performed by orotracheal intubation. Right carotid artery was intubated by a PE-10 cannula for the continuous monitoring of mean blood pressure (MAP) and heart rate (HR). The right external jugular vein was catheterized for volume resuscitation.The sham control group underwent the same procedure with catheter insertion but without balloon inflation.Livers were removed and fixed in paraffin to evaluate the histological alterations with the light microscopy. RESULTS: Mouse models of BD were successfully established about 20 minutes after balloon inflation, and the mean balloon volume at the time of BD was (105.77 ± 21.57)µl. The MAP and HR rapidly increased on occurrence of BD and the peak value was (128.28 ± 17.16) mmHg and (434.16 ± 55.75) beat/min, respectively, which were significant higher than those in the sham control group at the same time point (P=0.000). During the 4-hour follow-up time, MAP and HR in 72% (18/25) of BD animals remained haemodynamically stable. No animal died due to anesthesia and surgical operation.Hepatic tissues in BD mice showed mild focal ischemic damages (cellular edema, congestion, and inflammatory infiltration), which were slighter and fewer in sham control group. CONCLUSION: The mouse model of BD was successfully established with lower surgical difficulty and can be performed in a standardized, reproducible and successful way.


Asunto(s)
Muerte Encefálica , Modelos Animales de Enfermedad , Presión Intracraneal , Animales , Frecuencia Cardíaca , Masculino , Ratones , Ratones Endogámicos C57BL
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...