Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
Med Phys ; 2024 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-38734991

RESUMEN

BACKGROUND: In recent years, genetic algorithms have been applied in the field of nuclear technology design, producing superior optimization results compared to traditional methods. They can be employed in the design and optimization of beam shaping assemblies (BSA) BSA to obtain the desired neutron beams. But it should be noted that the direct combination of Monte Carlo methods with genetic algorithms requires a significant amount of computational resources and time. PURPOSE: Design and optimize BSA more efficiently to achieve neutron beams that meet specified recommendations. METHODS: We propose an approach of NSGA II with crucial variables which are identified by multivariate statistical techniques. This approach significantly reduces the problem sizes, thus reducing the time required for optimization. We illustrate this methodology using the example of BSA design for AB-BNCT. RESULTS: The computational efficiency has tripled with crucial variables. By using NSGA II, we obtained optimized models conforming to both the new and old version IAEA BNCT guidelines through a single optimization process and subjected them to phantom analysis. The results demonstrate that models obtained through this method can meet the IAEA recommendations with deep advantage depth (AD) and high absorbed ratio (AR). CONCLUSION: The genetic algorithm with crucial variables displays tremendous potential in addressing BSA optimization challenges.

2.
J Magn Reson Imaging ; 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38587279

RESUMEN

BACKGROUND: The choroid plexus (ChP), a densely vascularized structure, has drawn increasing attention for its involvement in brain homeostasis and waste clearance. While the volumetric changes have been explored in many imaging studies, few studies have investigated the vascular degeneration associated with aging in the ChP. PURPOSE: To investigate the sub-structural characteristics of the ChP, particularly the vascular compartment using high-resolution 7T imaging enhanced with Ferumoxytol, an ultrasmall super-paramagnetic iron oxide, which greatly increase the susceptibility contrast for vessels. STUDY TYPE: Prospective. SUBJECTS: Forty-nine subjects without neurological disorders (age: 21-80 years; 42 ± 17 years; 20 females). FIELD STRENGTH/SEQUENCE: 7-T with 2D and 3D T2* GRE, 3D MPRAGE T1, 2D TSE T2, and 2D FLAIR. ASSESSMENT: The vascular and stromal compartments of the ChP were segmented using K-means clustering on post-contrast 2D GRE images. Visual and qualitative assessment of ChP vascular characteristics were conducted independently by three observers. Vascular density (Volvessel/VolChP ratio) and susceptibility change (Δχ) induced by Ferumoxytol were analyzed on 3D GRE-derived susceptibility-weighted imaging and quantitative susceptibility mapping, respectively. STATISTICAL TESTS: Independent t-test, Mann-Whitney U test, and Chi-square test were utilized for group comparisons. The relationship between age and ChP's vascular alterations was examined using Pearson's correlation. Intra-class coefficient was calculated for inter-observer agreement. A P value <0.05 was considered statistically significant. RESULTS: 2D GRE images demonstrated superior contrast and accurate delineation of ChP substructures (ICC = 0.86). Older subjects exhibited a significantly smaller vascular density (16.5 ± 4.34%) and lower Δχ (22.10 ± 12.82 ppb) compared to younger subjects (24.85 ± 6.84% and 34.64 ± 12.69 ppb). Vascular density and mean Δχ within the ChP negatively correlated with age (r = -0.48, and r = -0.45). DATA CONCLUSION: Ferumoxytol-enhanced 7T images can demonstrate ChP alterations in elderly with decreased vascular density and expansion of nonvascular compartment. EVIDENCE LEVEL: 1 TECHNICAL EFFICACY: Stage 2.

3.
Neuroimage ; 291: 120597, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38554779

RESUMEN

Mapping the small venous vasculature of the hippocampus in vivo is crucial for understanding how functional changes of hippocampus evolve with age. Oxygen utilization in the hippocampus could serve as a sensitive biomarker for early degenerative changes, surpassing hippocampal tissue atrophy as the main source of information regarding tissue degeneration. Using an ultrahigh field (7T) susceptibility-weighted imaging (SWI) sequence, it is possible to capture oxygen-level dependent contrast of submillimeter-sized vessels. Moreover, the quantitative susceptibility mapping (QSM) results derived from SWI data allow for the simultaneous estimation of venous oxygenation levels, thereby enhancing the understanding of hippocampal function. In this study, we proposed two potential imaging markers in a cohort of 19 healthy volunteers aged between 20 and 74 years. These markers were: 1) hippocampal venous density on SWI images and 2) venous susceptibility (Δχvein) in the hippocampus-associated draining veins (the inferior ventricular veins (IVV) and the basal veins of Rosenthal (BVR) using QSM images). They were chosen specifically to help characterize the oxygen utilization of the human hippocampus and medial temporal lobe (MTL). As part of the analysis, we demonstrated the feasibility of measuring hippocampal venous density and Δχvein in the IVV and BVR at 7T with high spatial resolution (0.25 × 0.25 × 1 mm3). Our results demonstrated the in vivo reconstruction of the hippocampal venous system, providing initial evidence regarding the presence of the venous arch structure within the hippocampus. Furthermore, we evaluated the age effect of the two quantitative estimates and observed a significant increase in Δχvein for the IVV with age (p=0.006, r2 = 0.369). This may suggest the potential application of Δχvein in IVV as a marker for assessing changes in atrophy-related hippocampal oxygen utilization in normal aging and neurodegenerative diseases such as AD and dementia.


Asunto(s)
Venas Cerebrales , Imagen por Resonancia Magnética , Humanos , Adulto Joven , Adulto , Persona de Mediana Edad , Anciano , Imagen por Resonancia Magnética/métodos , Venas Cerebrales/diagnóstico por imagen , Oxígeno , Hipocampo/diagnóstico por imagen , Atrofia
4.
Magn Reson Med ; 92(1): 158-172, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38411277

RESUMEN

PURPOSE: Abnormalities in cerebral veins are a common finding in many neurological diseases, yet there is a scarcity of MRI techniques to assess venous hemodynamic function. The present study aims to develop a noncontrast technique to measure a novel blood flow circulatory measure, venous transit time (VTT), which denotes the time it takes for water to travel from capillary to major veins. METHODS: The proposed sequence, venous transit time imaging by changes in T1 relaxation (VICTR), is based on the notion that as water molecules transition from the tissue into the veins, they undergo a change in T1 relaxation time. The validity of the measured VTT was tested by studying the VTT along the anatomically known flow trajectory of venous vessels as well as using a physiological vasoconstrictive challenge of caffeine ingestion. Finally, we compared the VTT measured with VICTR MRI to a bolus-tracking method using gadolinium-based contrast agent. RESULTS: VTT was measured to be 3116.3 ± 326.0 ms in the posterior superior sagittal sinus (SSS), which was significantly longer than 2865.0 ± 390.8 ms at the anterior superior sagittal sinus (p = 0.004). The test-retest assessment showed an interclass correlation coefficient of 0.964. VTT was significantly increased by 513.8 ± 239.3 ms after caffeine ingestion (p < 0.001). VTT measured with VICTR MRI revealed a strong correlation (R = 0.84, p = 0.002) with that measured with the contrast-based approach. VTT was found inversely correlated to cerebral blood flow and venous oxygenation across individuals. CONCLUSION: A noncontrast MRI technique, VICTR MRI, was developed to measure the VTT of the brain.


Asunto(s)
Venas Cerebrales , Imagen por Resonancia Magnética , Humanos , Masculino , Adulto , Femenino , Velocidad del Flujo Sanguíneo/fisiología , Venas Cerebrales/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Circulación Cerebrovascular/fisiología , Reproducibilidad de los Resultados , Cafeína/farmacología , Medios de Contraste , Adulto Joven , Procesamiento de Imagen Asistido por Computador/métodos , Hemodinámica , Angiografía por Resonancia Magnética/métodos
5.
medRxiv ; 2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38260542

RESUMEN

Studying the relationship between cerebral oxygen utilization and cognitive impairment is essential to understanding neuronal functional changes in the disease progression of multiple sclerosis (MS). This study explores the potential of using venous susceptibility in internal cerebral veins (ICVs) as an imaging biomarker for cognitive impairment in relapsing-remitting MS (RRMS) patients. Quantitative susceptibility mapping derived from fully flow-compensated MRI phase data was employed to directly measure venous blood oxygen saturation levels (SvO2) in the ICVs. Results revealed a significant reduction in the susceptibility of ICVs (212.4 ± 30.8 ppb vs 239.4 ± 25.9 ppb) and a significant increase of SvO2 (74.5 ± 1.89 % vs 72.4 ± 2.23 %) in patients with RRMS compared with age- and sex-matched healthy controls. Both the susceptibility of ICVs (r = 0.646, p = 0.004) and the SvO2 (r = -0.603, p = 0.008) exhibited a strong correlation with cognitive decline in these patients assessed by the Paced Auditory Serial Addition Test, while no significant correlation was observed with clinical disability measured by the Expanded Disability Status Scale. The findings suggest that venous susceptibility in ICVs has the potential to serve as a specific indicator of oxygen metabolism and cognitive function in RRMS.

6.
Magn Reson Med ; 91(2): 558-569, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37749847

RESUMEN

PURPOSE: Quantitative mapping of brain perfusion, diffusion, T2 *, and T1 has important applications in cerebrovascular diseases. At present, these sequences are performed separately. This study aims to develop a novel MRI technique to simultaneously estimate these parameters. METHODS: This sequence to measure perfusion, diffusion, T2 *, and T1 mapping with magnetic resonance fingerprinting (MRF) was based on a previously reported MRF-arterial spin labeling (ASL) sequence, but the acquisition module was modified to include different TEs and presence/absence of bipolar diffusion-weighting gradients. We compared parameters derived from the proposed method to those derived from reference methods (i.e., separate sequences of MRF-ASL, conventional spin-echo DWI, and T2 * mapping). Test-retest repeatability and initial clinical application in two patients with stroke were evaluated. RESULTS: The scan time of our proposed method was 24% shorter than the sum of the reference methods. Parametric maps obtained from the proposed method revealed excellent image quality. Their quantitative values were strongly correlated with those from reference methods and were generally in agreement with values reported in the literature. Repeatability assessment revealed that ADC, T2 *, T1 , and B1 + estimation was highly reliable, with voxelwise coefficient of variation (CoV) <5%. The CoV for arterial transit time and cerebral blood flow was 16% ± 3% and 25% ± 9%, respectively. The results from the two patients with stroke demonstrated that parametric maps derived from the proposed method can detect both ischemic and hemorrhagic stroke. CONCLUSION: The proposed method is a promising technique for multi-parametric mapping and has potential use in patients with stroke.


Asunto(s)
Imagen por Resonancia Magnética , Accidente Cerebrovascular , Humanos , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Encéfalo/irrigación sanguínea , Espectroscopía de Resonancia Magnética , Perfusión , Accidente Cerebrovascular/diagnóstico por imagen , Fantasmas de Imagen , Procesamiento de Imagen Asistido por Computador/métodos
7.
Neuroimage ; 278: 120284, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37507078

RESUMEN

PURPOSE: In Dynamic contrast-enhanced MRI (DCE-MRI), Arterial Input Function (AIF) has been shown to be a significant contributor to uncertainty in the estimation of kinetic parameters. This study is to assess the feasibility of using a deep learning network to estimate local Capillary Input Function (CIF) to estimate blood-brain barrier (BBB) permeability, while reducing the required scan time. MATERIALS AND METHOD: A total of 13 healthy subjects (younger (<40 y/o): 8, older (> 67 y/o): 5) were recruited and underwent 25-min DCE-MRI scans. The 25 min data were retrospectively truncated to 10 min to simulate a reduced scan time of 10 min. A deep learning network was trained to predict the CIF using simulated tissue contrast dynamics with two vascular transport models. The BBB permeability (PS) was measured using 3 methods: (i) Ca-25min, using DCE-MRI data of 25 min with individually sampled AIF (Ca); (ii) Ca-10min, using truncated 10min data with AIF (Ca); and (iii) Cp-10min, using truncated 10 min data with CIF (Cp). The PS estimates from the Ca-25min method were used as reference standard values to assess the accuracy of the Ca-10min and Cp-10min methods in estimating the PS values. RESULTS: When compared to the reference method(Ca-25min), the Ca-10min and Cp-10min methods resulted in an overestimation of PS by 217 ± 241 % and 48.0 ± 30.2 %, respectively. The Bland Altman analysis showed that the mean difference from the reference was 8.85 ± 1.78 (x10-4 min-1) with the Ca-10min, while it was reduced to 1.63 ± 2.25 (x10-4 min-1) with the Cp-10min, resulting in an average reduction of 81%. The limits of agreement also reduced by up to 39.2% with the Cp-10min. We found a 75% increase of BBB permeability in the gray matter and a 35% increase in the white matter, when comparing the older group to the younger group. CONCLUSIONS: We demonstrated the feasibility of estimating the capillary-level input functions using a deep learning network. We also showed that this method can be used to estimate subtle age-related changes in BBB permeability with reduced scan time, without compromising accuracy. Moreover, the trained deep learning network can automatically select CIF, reducing the potential uncertainty resulting from manual user-intervention.


Asunto(s)
Barrera Hematoencefálica , Aprendizaje Profundo , Humanos , Barrera Hematoencefálica/diagnóstico por imagen , Medios de Contraste , Estudios Retrospectivos , Imagen por Resonancia Magnética/métodos , Permeabilidad Capilar , Permeabilidad , Reproducibilidad de los Resultados
8.
Aging Dis ; 2023 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-37196135

RESUMEN

Reduced cerebral blood flow (CBF) in the temporoparietal region and gray matter volumes (GMVs) in the temporal lobe were previously reported in patients with mild cognitive impairment (MCI) and Alzheimer's disease (AD). However, the temporal relationship between reductions in CBF and GMVs requires further investigation. This study sought to determine if reduced CBF is associated with reduced GMVs, or vice versa. Data came from 148 volunteers of the Cardiovascular Health Study Cognition Study (CHS-CS), including 58 normal controls (NC), 50 MCI, and 40 AD who had perfusion and structural MRIs during 2002-2003 (Time 2). Sixty-three of the 148 volunteers had follow-up perfusion and structural MRIs (Time 3). Forty out of the 63 volunteers received prior structural MRIs during 1997-1999 (Time 1). The relationships between GMVs and subsequent CBF changes, and between CBF and subsequent GMV changes were investigated. At Time 2, we observed smaller GMVs (p<0.05) in the temporal pole region in AD compared to NC and MCI. We also found associations between: (1) temporal pole GMVs at Time 2 and subsequent declines in CBF in this region (p=0.0014) and in the temporoparietal region (p=0.0032); (2) hippocampal GMVs at Time 2 and subsequent declines in CBF in the temporoparietal region (p=0.012); and (3) temporal pole CBF at Time 2 and subsequent changes in GMV in this region (p = 0.011). Therefore, hypoperfusion in the temporal pole may be an early event driving its atrophy. Perfusion declines in the temporoparietal and temporal pole follow atrophy in this temporal pole region.

9.
Res Sq ; 2023 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-36993561

RESUMEN

The purpose of this study was to develop and test a 3D multi-parameter MR fingerprinting (MRF) method for brain imaging applications. The subject cohort included 5 healthy volunteers, repeatability tests done on 2 healthy volunteers and tested on two multiple sclerosis (MS) patients. A 3D-MRF imaging technique capable of quantifying T1, T2 and T1ρ was used. The imaging sequence was tested in standardized phantoms and 3D-MRF brain imaging with multiple shots (1, 2 and 4) in healthy human volunteers and MS patients. Quantitative parametric maps for T1, T2, T1ρ, were generated. Mean gray matter (GM) and white matter (WM) ROIs were compared for each mapping technique, Bland-Altman plots and intra-class correlation coefficient (ICC) were used to assess repeatability and Student T-tests were used to compare results in MS patients. Standardized phantom studies demonstrated excellent agreement with reference T1/T2/T1ρ mapping techniques. This study demonstrates that the 3D-MRF technique is able to simultaneously quantify T1, T2 and T1ρ for tissue property characterization in a clinically feasible scan time. This multi-parametric approach offers increased potential to detect and differentiate brain lesions and to better test imaging biomarker hypotheses for several neurological diseases, including MS.

10.
Magn Reson Med ; 89(4): 1441-1455, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36404493

RESUMEN

PURPOSE: Filter exchange imaging (FEXI) and diffusion time (t)-dependent diffusion kurtosis imaging (DKI(t)) are both sensitive to water exchange between tissue compartments. The restrictive effects of tissue microstructure, however, introduce bias to the exchange rate obtained by these two methods, as their interpretation conventionally rely on the Kärger model of barrier limited exchange between Gaussian compartments. Here, we investigated whether FEXI and DKI(t) can provide comparable exchange rates in ex vivo mouse brains. THEORY AND METHODS: FEXI and DKI(t) data were acquired from ex vivo mouse brains on a preclinical MRI system. Phase cycling and negative slice prewinder gradients were used to minimize the interferences from imaging gradients. RESULTS: In the corpus callosum, apparent exchange rate (AXR) from FEXI correlated with the exchange rate (the inverse of exchange time, 1/τex ) from DKI(t) along the radial direction. In comparison, discrepancies between FEXI and DKI(t) were found in the cortex due to low filter efficiency and confounding effects from tissue microstructure. CONCLUSION: The results suggest that FEXI and DKI(t) are sensitive to the same exchange processes in white matter when separated from restrictive effects of microstructure. The complex microstructure in gray matter, with potential exchange among multiple compartments and confounding effects of microstructure, still pose a challenge for FEXI and DKI(t).


Asunto(s)
Agua , Sustancia Blanca , Ratones , Animales , Imagen por Resonancia Magnética , Imagen de Difusión Tensora/métodos , Sustancia Blanca/diagnóstico por imagen , Sustancia Gris , Imagen de Difusión por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen
11.
Aging Dis ; 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38270121

RESUMEN

Histopathological studies suggest that cerebral small vessel tortuosity is crucial in age-related blood flow reduction and cellular degeneration. However, in vivo evidence is lacking. Here, we used Ferumoxytol-enhanced 7T MRI to directly visualize cerebral small vessels (>300 µm), enabling the identification of vascular tortuosity and exploration of its links to age, tissue atrophy, and vascular risk factors. High-resolution 2D/3D gradient echo MRI at 7T enhanced with Ferumoxytol, an ultrasmall superparamagnetic iron oxide (USPIO), was obtained and analyzed for cerebral small medullary artery tortuosity from 37 healthy participants (21-70 years; mean/SD: 38±14 years; 19 females). Tortuous artery count and tortuosity indices were compared between young and old groups. Age effects on vascular tortuosity were examined through partial correlations and multiple linear regression, adjusting for sex, body mass index (BMI), blood pressure (BP), and other vascular risk factors. Associations between tortuous medullary arteries and tissue atrophy, perivascular spaces (PVS), and white matter (WM) hyperintensities were explored. Age and BMI, rather than BP, showed positive correlations with both tortuous artery count and tortuosity indices. A significant correlation existed between the number of tortuous arteries and WM atrophy. WM lesions were found in proximity to or at the distal ends of tortuous medullary arteries, especially within the deep WM. Moreover, the elderly population displayed a higher prevalence of PVS, including those containing enclosed tortuous arteries. Leveraging the blooming effect of Ferumoxytol, 7T MRI excels in directly detecting cerebral small arterial tortuosity in vivo, unveiling its associations with age, BMI, tissue atrophy, WMH and PVS.

12.
Brain Res ; 1796: 148097, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36150457

RESUMEN

BACKGROUND: Transcranial direct current stimulation (tDCS) is a safe and well-tolerated noninvasive technique used for cortical excitability modulation. tDCS has been extensively investigated for its clinical applications; however further understanding of its underlying in-vivo physiological mechanisms remains a fundamental focus of current research. OBJECTIVES: We investigated the simultaneous effects of tDCS on cerebral blood flow (CBF), venous blood oxygenation (Yv) and cerebral metabolic rate of oxygen (CMRO2) using simultaneous MRI in healthy adults to provide a reference frame for its neurobiological mechanisms. METHODS: Twenty-three healthy participants (age = 35.6 ± 15.0 years old, 10 males) completed a simultaneous tDCS-MRI session in a 3 T scanner fitted with a 64-channels head coil. A MR-compatible tDCS device was used to acquire CBF, Yv and CMRO2 at three time points: pre-, during- and post- 15 minutes of 2.0 mA tDCS on left anodal dorsolateral prefrontal cortex. RESULTS: During tDCS, CBF significantly increased (57.10 ± 8.33 mL/100g/min) from baseline (53.67 ± 7.75 mL/100g/min; p < 0.0001) and remained elevated in post-tDCS (56.79 ± 8.70 mL/100g/min). Venous blood oxygenation levels measured in pre-tDCS (60.71 ± 4.12 %) did not significantly change across the three timepoints. The resulting CMRO2 significantly increased by 5.9 % during-tDCS (175.68 ± 30.78 µmol/100g/min) compared to pre-tDCS (165.84 ± 25.32 µmol/100g/min; p = 0.0015), maintaining increased levels in post-tDCS (176.86 ± 28.58 µmol/100g/min). CONCLUSIONS: tDCS has immediate effects on neuronal excitability, as measured by increased cerebral blood supply and oxygen consumption supporting increased neuronal firing. These findings provide a standard range of CBF and CMRO2 changes due to tDCS in healthy adults that may be incorporated in clinical studies to evaluate its therapeutic potential.


Asunto(s)
Oxígeno , Estimulación Transcraneal de Corriente Directa , Adulto , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven , Circulación Cerebrovascular/fisiología , Imagen por Resonancia Magnética/métodos , Oxígeno/metabolismo , Consumo de Oxígeno/fisiología , Femenino
13.
Front Aging Neurosci ; 14: 972282, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36118685

RESUMEN

High-resolution susceptibility weighted imaging (SWI) provides unique contrast to small venous vasculature. The conspicuity of these mesoscopic veins, such as deep medullary veins in white matter, is subject to change from SWI venography when venous oxygenation in these veins is altered due to oxygenated blood susceptibility changes. The changes of visualization in small veins shows potential to depict regional changes of oxygen utilization and/or vascular density changes in the aging brain. The goal of this study was to use WM venous density to quantify small vein visibility in WM and investigate its relationship with neurodegenerative features, white matter hyperintensities (WMHs), and cognitive/functional status in elderly subjects (N = 137). WM venous density was significantly associated with neurodegeneration characterized by brain atrophy (ß = 0.046± 0.01, p < 0.001), but no significant association was found between WM venous density and WMHs lesion load (p = 0.3963). Further analysis of clinical features revealed a negative trend of WM venous density with the sum-of-boxes of Clinical Dementia Rating and a significant association with category fluency (1-min animal naming). These results suggest that WM venous density on SWI can be used as a sensitive marker to characterize cerebral oxygen metabolism and different stages of cognitive and functional status in neurodegenerative diseases.

14.
Magn Reson Med ; 88(5): 2259-2266, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35754146

RESUMEN

PURPOSE: Caffeine is known to alter brain perfusion by acting as an adenosine antagonist, but its effect on blood-brain barrier (BBB) permeability is not fully elucidated. This study aimed to dynamically monitor BBB permeability to water after a single dose of caffeine tablet using a non-contrast MRI technique. METHODS: Ten young healthy volunteers who were not regular coffee drinkers were studied. The experiment began with a pre-caffeine measurement, followed by four measurements at the post-caffeine stage. Water-extraction-with-phase-contrast-arterial-spin-tagging (WEPCAST) MRI was used to assess the time dependence of BBB permeability to water following the ingestion of 200 mg caffeine. Other cerebral physiological parameters including cerebral blood flow (CBF), venous oxygenation (Yv ), and cerebral metabolic rate of oxygen (CMRO2 ) were also examined. The relationships between cerebral physiological parameters and time were studied with mixed-effect models. RESULTS: It was found that, after caffeine ingestion, CBF and Yv showed a time-dependent decrease (p < 0.001), while CMRO2 did not change significantly. The fraction of arterial water crossing the BBB (E) showed a significant increase (p < 0.001). In contrast, the permeability-surface-area product (PS), i.e., BBB permeability to water, remained constant (p = 0.94). Additionally, it was observed that changes in physiological parameters were non-linear with regard to time and occurred at as early as 9 min after caffeine tablet ingestion. CONCLUSION: These results suggest an unchanged BBB permeability despite alterations in perfusion during a vasoconstrictive caffeine challenge.


Asunto(s)
Barrera Hematoencefálica , Cafeína , Barrera Hematoencefálica/diagnóstico por imagen , Barrera Hematoencefálica/metabolismo , Encéfalo/irrigación sanguínea , Encéfalo/diagnóstico por imagen , Cafeína/farmacología , Circulación Cerebrovascular/fisiología , Humanos , Imagen por Resonancia Magnética/métodos , Permeabilidad , Agua/metabolismo
15.
Front Neurol ; 13: 858805, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35572919

RESUMEN

Background and Purpose: The vascular tortuosity (VT) of the internal carotid artery (ICA), and vertebral artery (VA) can impact blood flow and neuronal function. However, few studies involved quantitative investigation of VT based on magnetic resonance imaging (MRI). The main purpose of our study was to evaluate the age and gender effects on ICA and VA regarding the tortuosity and flow changes by applying automatic vessel segmentation, centerline tracking, and phase mapping on MR angiography. Methods: A total of 247 subjects (86 males and 161 females) without neurological diseases participated in this study. All subjects obtained T1-weighted MRI, 3D time-of-flight MR angiography, and 2D phase-contrast (PC) MRI scans. To generate quantitative tortuosity metrics from TOF images, the vessel segmentation and centerline tracking were implemented based on Otsu thresholding and fast marching algorithms, respectively. Blood flow and velocity were measured using PC MRI. Among the 247 subjects, 144 subjects (≤ 60 years, 49 males/95 females) were categorized as the young group; 103 subjects (>60 years, 37 males/66 females) were categorized as the old group. Results: Independent t-test showed that older subjects had higher tortuosity metrics, whereas lower blood flow and velocity than young subjects (p < 0.0025, Bonferroni-corrected). Cerebral blood flow calculated using the sum flux of four target arteries normalized by the brain mass also showed significantly lower values in older subjects (p < 0.001). The age was observed to be positively correlated with the VT metrics. Compared to the males, the females demonstrated higher geometric indices within VAs as well as faster age-related vascular profile changes. After adjusting age and gender as covariates, maximum blood velocity is negatively correlated with geometric measurements. No association was observed between blood flux and geometric measures. Conclusions: Vascular auto-segmentation, centerline tracking, and phase mapping provide promising quantitative assessments of tortuosity and its effects on blood flow. The neck arteries demonstrate quantifiable and significant age-related morphological and hemodynamic alterations. Moreover, females showed more distinct vascular changes with age. Our work is built upon a comprehensive quantitative investigation of a large cohort of populations covering adult lifespan using MRI, the results can serve as reference ranges of each decade in the general population.

16.
Neuroimage ; 250: 118957, 2022 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-35122968

RESUMEN

The hippocampus is a small but complex grey matter structure that plays an important role in spatial and episodic memory and can be affected by a wide range of pathologies including vascular abnormalities. In this work, we introduce the use of Ferumoxytol, an ultra-small superparamagnetic iron oxide (USPIO) agent, to induce susceptibility in the arteries (as well as increase the susceptibility in the veins) to map the hippocampal micro-vasculature and to evaluate the quantitative change in tissue fractional vascular density (FVD), in each of its subfields. A total of 39 healthy subjects (aged 35.4 ± 14.2 years, from 18 to 81 years old) were scanned with a high-resolution (0.22×0.44×1 mm3) dual-echo SWI sequence acquired at four time points during a gradual increase in Ferumoxytol dose (final dose = 4 mg/kg). The volumes of each subfield were obtained automatically from the pre-contrast T1-weighted data. The dynamically acquired SWI data were co-registered and adaptively combined to reduce the blooming artifacts from large vessels, preserving the contrast from smaller vessels. The resultant SWI data were used to segment the hippocampal vasculature and to measure the FVD ((volume occupied by vessels)/(total volume)) for each subfield. The hippocampal fissure, along with the fimbria, granular cell layer of the dentate gyrus and cornu ammonis layers (except for CA1), showed higher micro-vascular FVD than the other parts of hippocampus. The CA1 region exhibited a significant correlation with age (R = -0.37, p < 0.05). demonstrating an overall loss of hippocampal vascularity in the normal aging process. Moreover, the vascular density reduction was more prominent than the age correlation with the volume reduction (R = -0.1, p > 0.05) of the CA1 subfield, which would suggest that vascular degeneration may precede tissue atrophy.


Asunto(s)
Mapeo Encefálico/métodos , Óxido Ferrosoférrico/administración & dosificación , Hipocampo/irrigación sanguínea , Angiografía por Resonancia Magnética/métodos , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Voluntarios Sanos , Humanos , Masculino , Microcirculación , Persona de Mediana Edad
17.
Elife ; 112022 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-35088711

RESUMEN

1H MRI maps brain structure and function non-invasively through versatile contrasts that exploit inhomogeneity in tissue micro-environments. Inferring histopathological information from magnetic resonance imaging (MRI) findings, however, remains challenging due to absence of direct links between MRI signals and cellular structures. Here, we show that deep convolutional neural networks, developed using co-registered multi-contrast MRI and histological data of the mouse brain, can estimate histological staining intensity directly from MRI signals at each voxel. The results provide three-dimensional maps of axons and myelin with tissue contrasts that closely mimic target histology and enhanced sensitivity and specificity compared to conventional MRI markers. Furthermore, the relative contribution of each MRI contrast within the networks can be used to optimize multi-contrast MRI acquisition. We anticipate our method to be a starting point for translation of MRI results into easy-to-understand virtual histology for neurobiologists and provide resources for validating novel MRI techniques.


Asunto(s)
Encéfalo/diagnóstico por imagen , Animales , Aprendizaje Profundo , Técnicas Histológicas , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Ratones , Ratones Endogámicos C57BL , Redes Neurales de la Computación
18.
Alzheimers Dement ; 18(5): 899-910, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35023610

RESUMEN

INTRODUCTION: Neurological complications among hospitalized COVID-19 patients may be associated with elevated neurodegenerative biomarkers. METHODS: Among hospitalized COVID-19 patients without a history of dementia (N = 251), we compared serum total tau (t-tau), phosphorylated tau-181 (p-tau181), glial fibrillary acidic protein (GFAP), neurofilament light chain (NfL), ubiquitin carboxy-terminal hydrolase L1 (UCHL1), and amyloid beta (Aß40,42) between patients with or without encephalopathy, in-hospital death versus survival, and discharge home versus other dispositions. COVID-19 patient biomarker levels were also compared to non-COVID cognitively normal, mild cognitive impairment (MCI), and Alzheimer's disease (AD) dementia controls (N = 161). RESULTS: Admission t-tau, p-tau181, GFAP, and NfL were significantly elevated in patients with encephalopathy and in those who died in-hospital, while t-tau, GFAP, and NfL were significantly lower in those discharged home. These markers correlated with severity of COVID illness. NfL, GFAP, and UCHL1 were higher in COVID patients than in non-COVID controls with MCI or AD. DISCUSSION: Neurodegenerative biomarkers were elevated to levels observed in AD dementia and associated with encephalopathy and worse outcomes among hospitalized COVID-19 patients.


Asunto(s)
Enfermedad de Alzheimer , COVID-19 , Disfunción Cognitiva , Péptidos beta-Amiloides , Biomarcadores , COVID-19/complicaciones , Cognición , Mortalidad Hospitalaria , Humanos , Proteínas tau
20.
Fluids Barriers CNS ; 18(1): 61, 2021 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-34952607

RESUMEN

BACKGROUND: Cerebrospinal fluid (CSF) circulation between the brain and spinal canal, as part of the glymphatic system, provides homeostatic support to brain functions and waste clearance. Recently, it has been observed that CSF flow is strongly driven by cardiovascular brain pulsation, and affected by body orientation. The advancement of MRI has allowed for non-invasive examination of the CSF hydrodynamic properties. However, very few studies have addressed their relationship with body position (e.g., upright versus supine). It is important to understand how CSF hydrodynamics are altered by body position change in a single cardiac phase and how cumulative long hours staying in either upright or supine position can affect craniocervical CSF flow. METHODS: In this study, we investigate the changes in CSF flow at the craniocervical region with flow-sensitive MRI when subjects are moved from upright to supine position. 30 healthy volunteers were imaged in upright and supine positions using an upright MRI. The cranio-caudal and caudo-cranial CSF flow, velocity and stroke volume were measured at the C2 spinal level over one cardiac cycle using phase contrast MRI. Statistical analysis was performed to identify differences in CSF flow properties between the two positions. RESULTS: CSF stroke volume per cardiac cycle, representing CSF volume oscillating in and out of the cranium, was ~ 57.6% greater in supine (p < 0.0001), due to a ~ 83.8% increase in caudo-cranial CSF peak velocity during diastole (p < 0.0001) and extended systolic phase duration when moving from upright (0.25 ± 0.05 s) to supine (0.34 ± 0.08 s; p < 0.0001). Extrapolation to a 24 h timeframe showed significantly larger total CSF volume exchanged at C2 with 10 h spent supine versus only 5 h (p < 0.0001). CONCLUSIONS: In summary, body position has significant effects on CSF flow in and out of the cranium, with more CSF oscillating in supine compared to upright position. Such difference was driven by an increased caudo-cranial diastolic CSF velocity and an increased systolic phase duration when moving from upright to supine position. Extrapolation to a 24 h timeframe suggests that more time spent in supine position increases total amount of CSF exchange, which may play a beneficial role in waste clearance in the brain.


Asunto(s)
Líquido Cefalorraquídeo/diagnóstico por imagen , Imagen por Resonancia Magnética , Sedestación , Posición Supina , Adulto , Vértebras Cervicales/diagnóstico por imagen , Femenino , Humanos , Hidrodinámica , Imagen por Resonancia Magnética/métodos , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Cráneo/diagnóstico por imagen
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...