Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Atmos Meas Tech ; 14(1): 647-663, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33643474

RESUMEN

Analysis of formaldehyde measurements by the Pandora spectrometer systems between 2016 and 2019 suggested that there was a temperature dependent process inside Pandora head sensor that emitted formaldehyde. Some parts in the head sensor were manufactured from thermal plastic polyoxymethylene homopolimer (E.I. Du Pont de Nemour & Co., USA: POM-H Delrin®) and were responsible for formaldehyde production. Laboratory analysis of the four Pandora head sensors showed that internal formaldehyde production had exponential temperature dependence with a damping coefficient of 0.0911±0.0024 °C-1 and the exponential function amplitude ranging from 0.0041 DU to 0.049 DU. No apparent dependency on the head sensor age and heating/cooling rates was detected. The total amount of formaldehyde internally generated by the POM-H Delrin components and contributing to the direct sun measurements were estimated based on the head sensor temperature and solar zenith angle of the measurements. Measurements in winter, during colder (<10°C) days in general and at high solar zenith angles (> 75 °) were minimally impacted. Measurements during hot days (>28°C) and small solar zenith angles had up to 1 DU (2.69×1016 molecules/cm2) contribution from POM-H Delrin parts. Multi-axis differential slant column densities were minimally impacted (< 0.01 DU) due to the reference spectrum collected within a short time period with a small difference in head sensor temperature. Three new POM-H Delrin free Pandora head sensors (manufactured in summer 2019) were evaluated for temperature dependent attenuation across the entire spectral range (300 to 530 nm). No formaldehyde or any other absorption above the instrumental noise was observed across the entire spectral range.

2.
Atmos Meas Tech ; 13(11): 6113-6140, 2020 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-34122664

RESUMEN

Airborne and ground-based Pandora spectrometer NO2 column measurements were collected during the 2018 Long Island Sound Tropospheric Ozone Study (LISTOS) in the New York City/Long Island Sound region, which coincided with early observations from the Sentinel-5P TROPOspheric Monitoring Instrument (TROPOMI) instrument. Both airborne- and ground-based measurements are used to evaluate the TROPOMI NO2 Tropospheric Vertical Column (TrVC) product v1.2 in this region, which has high spatial and temporal heterogeneity in NO2. First, airborne and Pandora TrVCs are compared to evaluate the uncertainty of the airborne TrVC and establish the spatial representativeness of the Pandora observations. The 171 coincidences between Pandora and airborne TrVCs are found to be highly correlated (r 2 =0.92 and slope of 1.03), with the largest individual differences being associated with high temporal and/or spatial variability. These reference measurements (Pandora and airborne) are complementary with respect to temporal coverage and spatial representativity. Pandora spectrometers can provide continuous long-term measurements but may lack areal representativity when operated in direct-sun mode. Airborne spectrometers are typically only deployed for short periods of time, but their observations are more spatially representative of the satellite measurements with the added capability of retrieving at subpixel resolutions of 250m×250m over the entire TROPOMI pixels they overfly. Thus, airborne data are more correlated with TROPOMI measurements (r 2 = 0.96) than Pandora measurements are with TROPOMI (r 2 = 0.84). The largest outliers between TROPOMI and the reference measurements appear to stem from too spatially coarse a priori surface reflectivity (0.5°) over bright urban scenes. In this work, this results during cloud-free scenes that, at times, are affected by errors in the TROPOMI cloud pressure retrieval impacting the calculation of tropospheric air mass factors. This factor causes a high bias in TROPOMI TrVCs of 4%-11%. Excluding these cloud-impacted points, TROPOMI has an overall low bias of 19%-33% during the LISTOS timeframe of June-September 2018. Part of this low bias is caused by coarse a priori profile input from the TM5-MP model; replacing these profiles with those from a 12 km North American Model-Community Multiscale Air Quality (NAMCMAQ) analysis results in a 12%-14% increase in the TrVCs. Even with this improvement, the TROPOMI-NAMCMAQ TrVCs have a 7%-19% low bias, indicating needed improvement in a priori assumptions in the air mass factor calculation. Future work should explore additional impacts of a priori inputs to further assess the remaining low biases in TROPOMI using these datasets.

3.
Nucleic Acids Res ; 46(14): 6983-6995, 2018 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-29924364

RESUMEN

Self-cleaving ribozymes are biologically relevant RNA molecules which catalyze site-specific cleavage of the phosphodiester backbone. Gathering knowledge of their three-dimensional structures is critical toward an in-depth understanding of their function and chemical mechanism. Equally important is collecting information on the folding process and the inherent dynamics of a ribozyme fold. Over the past years, Selective-2'-Hydroxyl Acylation analyzed by Primer Extension (SHAPE) turned out to be a significant tool to probe secondary and tertiary interactions of diverse RNA species at the single nucleotide level under varying environmental conditions. Small self-cleaving ribozymes, however, have not been investigated by this method so far. Here, we describe SHAPE probing of pre-catalytic folds of the recently discovered ribozyme classes twister, twister-sister (TS), pistol and hatchet. The study has implications on Mg2+-dependent folding and reveals potentially dynamic residues of these ribozymes that are otherwise difficult to identify. For twister, TS and pistol ribozymes the new findings are discussed in the light of their crystal structures, and in case of twister also with respect to a smFRET folding analysis. For the hatchet ribozyme where an atomic resolution structure is not yet available, the SHAPE data challenge the proposed secondary structure model and point at selected residues and putative long-distance interactions that appear crucial for structure formation and cleavage activity.


Asunto(s)
Magnesio/química , ARN Catalítico/química , Modelos Moleculares , Pliegue del ARN , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...