Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Parasit Vectors ; 15(1): 491, 2022 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-36578020

RESUMEN

BACKGROUND: With the largest cattle population in Africa and vast swathes of fertile lands infested by tsetse flies, trypanosomosis is a major challenge for Ethiopian farmers. Managing the problem strategically and rationally requires comprehensive and detailed information on disease and vector distribution at the national level. To this end, the National Institute for Control and Eradication of Tsetse and Trypanosomosis (NICETT) developed a national atlas of tsetse and African animal trypanosomosis (AAT) for Ethiopia. METHODS: This first edition of the atlas focused on the tsetse-infested areas in western Ethiopia. Data were collected between 2010 and 2019 in the framework of national surveillance and control activities. Over 88,000 animals, mostly cattle, were tested with the buffy-coat technique (BCT). Odour-enhanced traps were deployed in approximately 14,500 locations for the entomological surveys. Animal- and trap-level data were geo-referenced, harmonized and centralized in a single database. RESULTS: AAT occurrence was confirmed in 86% of the districts surveyed (107/124). An overall prevalence of 4.8% was detected by BCT in cattle. The mean packed cell volume (PCV) of positive animals was 22.4, compared to 26.1 of the negative. Trypanosoma congolense was responsible for 61.9% of infections, T. vivax for 35.9% and T. brucei for 1.7%. Four tsetse species were found to have a wide geographic distribution. The highest apparent density (AD) was reported for Glossina pallidipes in the Southern Nations, Nationalities and People's Region (SNNPR) (3.57 flies/trap/day). Glossina tachinoides was the most abundant in Amhara (AD 2.39), Benishangul-Gumuz (2.38), Gambela (1.16) and Oromia (0.94) regions. Glossina fuscipes fuscipes and G. morsitans submorsitans were detected at lower densities (0.19 and 0.42 respectively). Only one specimen of G. longipennis was captured. CONCLUSIONS: The atlas establishes a reference for the distribution of tsetse and AAT in Ethiopia. It also provides crucial evidence to plan surveillance and monitor control activities at the national level. Future work on the atlas will focus on the inclusion of data collected by other stakeholders, the broadening of the coverage to tsetse-free areas and continuous updates. The extension of the atlas to data on control activities is also envisaged.


Asunto(s)
Tripanosomiasis Africana , Tripanosomiasis , Moscas Tse-Tse , Animales , Bovinos , Etiopía/epidemiología , Insectos Vectores , Tripanosomiasis Africana/epidemiología , Tripanosomiasis Africana/prevención & control , Tripanosomiasis Africana/veterinaria
2.
Open Res Eur ; 2: 67, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-37645305

RESUMEN

Vector-borne diseases affecting livestock have serious impacts in Africa. Trypanosomosis is caused by parasites transmitted by tsetse flies and other blood-sucking Diptera. The animal form of the disease is a scourge for African livestock keepers, is already present in Latin America and Asia, and has the potential to spread further. A human form of the disease also exists, known as human African trypanosomosis or sleeping sickness. Controlling and progressively minimizing the burden of animal trypanosomosis (COMBAT) is a four-year research and innovation project funded by the European Commission, whose ultimate goal is to reduce the burden of animal trypanosomosis (AT) in Africa. The project builds on the progressive control pathway (PCP), a risk-based, step-wise approach to disease reduction or elimination. COMBAT will strengthen AT control and prevention by improving basic knowledge of AT, developing innovative control tools, reinforcing surveillance, rationalizing control strategies, building capacity, and raising awareness. Knowledge gaps on disease epidemiology, vector ecology and competence, and biological aspects of trypanotolerant livestock will be addressed. Environmentally friendly vector control technologies and more effective and adapted diagnostic tools will be developed. Surveillance will be enhanced by developing information systems, strengthening reporting, and mapping and modelling disease risk in Africa and beyond. The socio-economic burden of AT will be assessed at a range of geographical scales. Guidelines for the PCP and harmonized national control strategies and roadmaps will be developed. Gender equality and ethics will be pivotal in all project activities. The COMBAT project benefits from the expertise of African and European research institutions, national veterinary authorities, and international organizations. The project consortium comprises 21 participants, including a geographically balanced representation from 13 African countries, and it will engage a larger number of AT-affected countries through regional initiatives.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...