Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Data ; 10(1): 611, 2023 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-37696836

RESUMEN

A large number of historical simulations and future climate projections are available from Global Climate Models, but these are typically of coarse resolution, which limits their effectiveness for assessing local scale changes in climate and attendant impacts. Here, we use a novel statistical downscaling model capable of replicating extreme events, the Bias Correction Constructed Analogues with Quantile mapping reordering (BCCAQ), to downscale daily precipitation, air-temperature, maximum and minimum temperature, wind speed, air pressure, and relative humidity from 18 GCMs from the Coupled Model Intercomparison Project Phase 6 (CMIP6). BCCAQ is calibrated using high-resolution reference datasets and showed a good performance in removing bias from GCMs and reproducing extreme events. The globally downscaled data are available at the Centre for Environmental Data Analysis ( https://doi.org/10.5285/c107618f1db34801bb88a1e927b82317 ) for the historical (1981-2014) and future (2015-2100) periods at 0.25° resolution and at daily time step across three Shared Socioeconomic Pathways (SSP2-4.5, SSP5-3.4-OS and SSP5-8.5). This new climate dataset will be useful for assessing future changes and variability in climate and for driving high-resolution impact assessment models.

2.
Sci Rep ; 12(1): 3701, 2022 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-35260650

RESUMEN

Accurate information on flood extent and exposure is critical for disaster management in data-scarce, vulnerable regions, such as Sub-Saharan Africa (SSA). However, uncertainties in flood extent affect flood exposure estimates. This study developed a framework to examine the spatiotemporal pattern of floods and to assess flood exposure through utilization of satellite images, ground-based participatory mapping of flood extent, and socio-economic data. Drawing on a case study in the White Volta basin in Western Africa, our results showed that synergetic use of multi-temporal radar and optical satellite data improved flood mapping accuracy (77% overall agreement compared with participatory mapping outputs), in comparison with existing global flood datasets (43% overall agreement for the moderate-resolution imaging spectroradiometer (MODIS) Near Real-Time (NRT) Global Flood Product). Increases in flood extent were observed according to our classified product, as well as two existing global flood products. Similarly, increased flood exposure was also observed, however its estimation remains highly uncertain and sensitive to the input dataset used. Population exposure varied greatly depending on the population dataset used, while the greatest farmland and infrastructure exposure was estimated using a composite flood map derived from three products, with lower exposure estimated from each flood product individually. The study shows that there is considerable scope to develop an accurate flood mapping system in SSA and thereby improve flood exposure assessment and develop mitigation and intervention plans.


Asunto(s)
Inundaciones , Ríos , Monitoreo del Ambiente/métodos , Tecnología de Sensores Remotos , Imágenes Satelitales
3.
Sci Total Environ ; 742: 140504, 2020 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-32623168

RESUMEN

Local-scale climate change adaptation is receiving more attention to reduce the adverse effects of climate change. The process of developing adaptation measures at local-scale (e.g., river basins) requires high-quality climate information with higher resolution. Climate projections are available at a coarser spatial resolution from Global Climate Models (GCMs) and require spatial downscaling and bias correction to drive hydrological models. We used the hybrid multiple linear regression and stochastic weather generator model (Statistical Down-Scaling Model, SDSM) to develop a location-based climate projection, equivalent to future station data, from GCMs. Meteorological data from 24 ground stations and the most accurate satellite and reanalysis products identified for the region, such as Climate Hazards Group InfraRed Precipitation with Station Data were used. The Soil Water Assessment Tool (SWAT) was used to assess the impacts of the projected climate on hydrology. Both SDSM and SWAT were calibrated and validated using the observed climate and streamflow data, respectively. Climate projection based on SDSM, in one of the large and agricultural intensive basins in Ethiopia (i.e., Awash), show high variability in precipitation but an increase in maximum (Tmax) and minimum (Tmin) temperature, which agrees with global warming. On average, the projection shows an increase in annual precipitation (>10%), Tmax (>0.4 °C), Tmin (>0.2 °C) and streamflow (>34%) in the 2020s (2011-2040), 2050s (2041-2070), and 2080s (2071-2100) under RCP2.6-RCP8.5. Although no significant trend in precipitation is found, streamflow during March-May and June-September is projected to increase throughout the 21 century by an average of more than 1.1% and 24%, respectively. However, streamflow is projected to decrease during January-February and October-November by more than 6%. Overall, considering the projected warming and changes in seasonal flow, local-scale adaptation measures to limit the impact on agriculture, water and energy sectors are required.

4.
Sci Rep ; 9(1): 11376, 2019 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-31388068

RESUMEN

Detecting changes in climate is a prerequisite for a better understanding of the climate and developing adaptation and mitigation measures at a regional and local scale. In this study long-term trends in rainfall and maximum and minimum temperature (T-max and T-min) were analysed on seasonal and annual time scales for East Africa. High resolution gridded rainfall (1981-2016) and temperature (1979-2010) data from international databases like the Climate Hazards Group are used. Long-term seasonal trend analysis shows a non-significant (except for small areas), decreasing (increasing) trend in rainfall in eastern (western) parts of Ethiopia and Kenya and a decreasing trend in large parts of Tanzania during the long rainy season. On the other hand, a non-significant increasing trend in large parts of the region is observed during the short rain season. With regard to annual trends, results largely confirm seasonal analyses: only a few significant trends in rainfall, but significant increasing trends in T-max (up to 1.9 °C) and T-min (up to 1.2 °C) for virtually the whole region. Our results demonstrate the need and added value of analysing climate trends based on data with high spatial resolution allowing sustainable adaptation measures at local scales.

5.
Sci Total Environ ; 682: 160-170, 2019 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-31112817

RESUMEN

In East Africa, climate change and variability have shown a strong impact on sectors such as agriculture, energy, and water. To allow mitigation and adaptation of the possible impacts of the projected change in climate, this study applies a Statistical Downscaling Model (SDSM) to generate a high-resolution climate projection, equivalent to future station data, to drive impact assessment models in selected, agricultural intensive, basins of Ethiopia (EthShed), Kenya (KenShed), and Tanzania (TanShed). Observed and large-scale climate variables (predictors) are obtained from the national meteorological agency of Ethiopia and international databases. BROOK90, a physical-based hydrological model, is used to assess the impacts of the projected change in precipitation and maximum and minimum temperature (T-max, and T-min) on the water balance. Based on SDSM, the results show an increase in precipitation, relative to the baseline period (1961-1990), in EthShed (14% - 50%) and KenShed (15% - 86%) and a decrease in TanShed (1.3% - 6.3%) in the 20s (2011-2040), 50s (2041-2070), and 80s (2071-2100) under the three Representative Concentration Pathways (RCPs; RCP2.6, RCP4.5, and RCP8.5). T-max (anomalies up to 3.7 °C) and T-min (anomalies up to 2.76 °C) will be warmer than the baseline period throughout the 21 century in all three basins. In line with the projected change in precipitation and temperature, an increase (decrease) in seasonal and annual streamflow, soil-water, and evaporation in EthShed and KenShed (TanShed) is projected in the 20s, 50s, and 80s. In general, sustainable adaptation measures are required to be developed in a site-specific manner, considering the projected increase in temperature and evaporation in all three basins and a decrease in soil-water and streamflow in TanShed.

6.
Sci Data ; 6(1): 31, 2019 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-30988412

RESUMEN

For many regions of the world, current climate change projections are only available at coarser spatial resolution from Global Climate Models (GCMs) that cannot directly be used in impact assessment and adaptation studies at regional and local scale. Impact assessment studies require high-resolution climate data to drive impact assessment models. To overcome this data challenge, we produced a station based climate projection (precipitation and maximum and minimum temperature) for Ethiopia, Kenya, and Tanzania using observed daily data from 211 stations obtained from the National Meteorological Agency of Ethiopia and international databases. Moreover, 26 large-scale climate variables derived from the National Centers for Environmental Prediction reanalysis data (1961-2005) and second generation Canadian Earth System Model (CanESM2, 1961-2100) are used. Statistical Down-Scaling Model (SDSM) is used to produce the required high-resolution climate projection by developing a statistical relationship between the large- and local-scale climate variables. The predictors are analysed more than 16458 times and we provided 20 ensembles for the current (1961-2005) and future (2006-2100, under RCP2.6, RCP4.5, and RCP8.5) climate.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...