Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biol Proced Online ; 26(1): 14, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773366

RESUMEN

Extracellular vesicles (EVs) are nano-sized, membranous transporters of various active biomolecules with inflicting phenotypic capabilities, that are naturally secreted by almost all cells with a promising vantage point as a potential leading drug delivery platform. The intrinsic characteristics of their low toxicity, superior structural stability, and cargo loading capacity continue to fuel a multitude of research avenues dedicated to loading EVs with therapeutic and diagnostic cargos (pharmaceutical compounds, nucleic acids, proteins, and nanomaterials) in attempts to generate superior natural nanoscale delivery systems for clinical application in therapeutics. In addition to their well-known role in intercellular communication, EVs harbor microRNAs (miRNAs), which can alter the translational potential of receiving cells and thus act as important mediators in numerous biological and pathological processes. To leverage this potential, EVs can be structurally engineered to shuttle therapeutic miRNAs to diseased recipient cells as a potential targeted 'treatment' or 'therapy'. Herein, this review focuses on the therapeutic potential of EV-coupled miRNAs; summarizing the biogenesis, contents, and function of EVs, as well as providing both a comprehensive discussion of current EV loading techniques and an update on miRNA-engineered EVs as a next-generation platform piloting benchtop studies to propel potential clinical translation on the forefront of nanomedicine.

2.
Front Cell Dev Biol ; 11: 1142629, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37091982

RESUMEN

Climate change-induced global warming results in rises in body temperatures above normal physiological levels (hyperthermia) with negative impacts on reproductive function in dairy and beef animals. Extracellular vesicles (EVs), commonly described as nano-sized, lipid-enclosed complexes, harnessed with a plethora of bioactive cargoes (RNAs, proteins, and lipids), are crucial to regulating processes like folliculogenesis and the initiation of different signaling pathways. The beneficial role of follicular fluid-derived EVs in inducing thermotolerance to oocytes during in vitro maturation (IVM) has been evidenced. Here we aimed to determine the capacity of in vitro cultured granulosa cell-derived EVs (GC-EVs) to modulate bovine oocytes' thermotolerance to heat stress (HS) during IVM. Moreover, this study tested the hypothesis that EVs released from thermally stressed GCs (S-EVs) shuttle protective messages to provide protection against subsequent HS in bovine oocytes. For this, sub-populations of GC-EVs were generated from GCs subjected to 38.5°C (N-EVs) or 42°C (S-EVs) and supplemented to cumulus-oocyte complexes (COCs) matured in vitro at the normal physiological body temperature of the cow (38.5°C) or HS (41°C) conditions. Results indicate that S-EVs improve the survival of oocytes by reducing ROS accumulation, improving mitochondrial function, and suppressing the expression of stress-associated genes thereby reducing the severity of HS on oocytes. Moreover, our findings indicate a carryover impact from the addition of GC-EVs during oocyte maturation in the development to the blastocyst stage with enhanced viability.

3.
Mol Hum Reprod ; 29(4)2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-36852862

RESUMEN

Innumerable similarities in reproductive cyclicity and hormonal alterations highlight the considerable utility of the mare to study aspects of follicular dynamics and reproductive function in view of the largely constricted, human research subjects. The bi-directional communication between the growing oocyte and the surrounding somatic cells embodies the hallmark of mammalian follicular development, partially mediated by extracellular vesicles (EVs) encapsulated with microRNAs (miRNAs) and present in the follicular fluid (FF). Here, we aimed to decipher the dynamics of the miRNAs in EVs from equine FF aspirated in vivo during different stages of follicular development, namely, predeviation (PreDev; 18-20 mm), deviation (Dev; 22-25 mm), postdeviation (PostDev; 26-29 mm), preovulatory (PreOV; 30-35 mm), and impending ovulation (IMP; ∼40 mm). Approximately 176 known miRNAs were found in all groups with 144 mutually detected among all groups. Cluster analysis exhibited 15 different expression patterns during follicular development. Among these patterns, a group of 22 miRNAs (including miR-146b-5p, miR-140, and miR-143) exhibited a sharp reduction in expression from the PreDev until the PreOV stage. Another cluster of 23 miRNAs (including miR-106b, miR-199a-5p, and miR-125a-5p) exhibited a stable expression pattern at the PreDev stage until the PostDev stage, with a significant increase at the PreOV stage followed by a significant decrease at the IMP stage. In conclusion, this study provides greater insights into the stage-specific expression dynamics of FF EV-miRNAs during equine follicular development, which may propose novel approaches to improve ART and provide new biomarkers to facilitate the assessment of ovarian pathophysiological conditions.


Asunto(s)
Vesículas Extracelulares , MicroARNs , Caballos , Animales , Humanos , Femenino , Líquido Folicular/metabolismo , MicroARNs/metabolismo , Folículo Ovárico/metabolismo , Ovulación/genética , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , Mamíferos
4.
Front Genet ; 14: 1267053, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38327702

RESUMEN

Post calving metabolic stress reduces the fertility of high producing dairy cows possibly by altering the expression of genes in the maternal environment via epigenetic modifications. Therefore, this study was conducted to identify endometrial DNA methylation marks that can be associated with pregnancy outcomes in postpartum cows at the time of breeding. For this, twelve days post-calving, cows were either offered a control diet or supplemented daily with rumen-protected methionine. Cows showing heat 50-64 days postpartum were artificially inseminated. Endometrial cytobrush samples were collected 4-8 h after artificial insemination and classified based on the pregnancy out comes as those derived from cows that resulted in pregnancy or resulted in no pregnancy. The DNAs isolated from endometrial samples were then subject to reduced representative bisulfite sequencing for DNA methylation analysis. Results showed that in the control diet group, 1,958 differentially methylated CpG sites (DMCGs) were identified between cows that resulted in pregnancy and those that resulted in no pregnancy of which 890 DMCGs were located on chr 27: 6217254-6225600 bp. A total of 537 DMCGs were overlapped with 313 annotated genes that were involved in various pathways including signal transduction, signalling by GPCR, aldosterone synthesis and secretion. Likewise, in methionine supplemented group, 3,430 CpG sites were differentially methylated between the two cow groups of which 18.7% were located on Chr27: 6217254-6225600 bp. A total of 1,781 DMCGS were overlapped with 890 genes which involved in developmental and signalling related pathways including WNT-signalling, focal adhesion and ECM receptor interaction. Interestingly, 149 genes involved in signal transduction, axon guidance and non-integrin membrane-ECM interactions were differentially methylated between the two cow groups irrespective of their feeding regime, while 453 genes involved in axon guidance, notch signalling and collagen formation were differentially methylated between cows that received rumen protected methionine and control diet irrespective of their fertility status. Overall, this study indicated that postpartum cows that could potentially become pregnant could be distinguishable based on their endometrial DNA methylation patterns at the time of breeding.

5.
Cell Tissue Res ; 385(3): 769-783, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34008050

RESUMEN

Transcription factors (TFs) are known to be involved in regulating the expression of several classes of genes during folliculogenesis. However, the regulatory role of TFs during oxidative stress (OS) is not fully understood. The current study was aimed to investigate the regulation of the TFs in bovine granulosa cells (bGCs) during exposure to OS induced by H2O2 in vitro. For this, bGCs derived from ovarian follicles were cultured in vitro till their confluency and then treated with H2O2 for 40 min. Twenty-four hours later, cells were subjected to various phenotypic and gene expression analyses for genes related to TFs, endoplasmic reticulum stress, apoptosis, cell proliferation, and differentiation markers. The bGCs exhibited higher reactive oxygen species accumulation, DNA fragmentation, and endoplasmic reticulum stress accompanied by reduction of mitochondrial activity after exposure to OS. In addition, higher lipid accumulation and lower cell proliferation were noticed in H2O2-challenged cells. The mRNA level of TFs including NRF2, E2F1, KLF6, KLF9, FOS, SREBF1, SREBF2, and NOTCH1 was increased in H2O2-treated cells compared with non-treated controls. However, the expression level of KLF4 and its downstream gene, CCNB1, were downregulated in the H2O2-challenged group. Moreover, targeted inhibition of NRF2 using small interference RNA resulted in reduced expression of KLF9, FOS, SREBF2, and NOTCH1 genes, while the expression of KLF4 was upregulated. Taken together, bovine granulosa cells exposed to OS exhibited differential expression of various transcription factors, which are mediated by the NRF2 signaling pathway.


Asunto(s)
Células de la Granulosa/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo/efectos de los fármacos , Factores de Transcripción/metabolismo , Animales , Bovinos , Femenino , Transducción de Señal , Transfección
6.
J Biochem Mol Toxicol ; 35(8): e22816, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34043862

RESUMEN

The present study was conducted to investigate the potential adverse effect of Pb on pregnant Sprague-Dawley rats and their fetuses after maternal exposure, on gestational days (GD) 7-16. The possible protective role of taurine (TA), administered throughout the gestation period (GD 1-20) against Pb toxicity, was also evaluated. Pregnant rats were divided into four groups: Group 1 (control) was given distilled water; Group 2 was exposed to Pb (250 ppm) in drinking water (GD 7-16), whereas Group 3 received TA (50 mg/kg/day) by oral gavage (GD 1-20); Group 4 was exposed to Pb (GD 7-16), whereas pretreated with TA from GD 1 till the end of the gestation period. After termination on GD 20, maternal and embryo-fetal outcomes were evaluated. Blood samples were collected for hematological and biochemical parameters assessment. The results showed that, Pb induced a significant reduction in the maternal body weight, weight gain, uterine and placental weight, in addition to a high incidence of abortion and fetal resorption. Meanwhile, fetuses demonstrated decreased body weight and length, with a high rate of mortality as well as external and skeletal abnormalities. Additionally, Pb induced severe hematological and biochemical alterations in both dams and fetuses. The toxicity of Pb was further emphasized by placental histopathological examination and hepatic DNA fragmentation. Pretreatment with TA greatly attenuated the impact of Pb on both maternal and fetal parameters. Moreover, TA alleviated the incidence of placental damage and hepatic DNA fragmentation. The results highlight the potential prophylaxis role of TA against maternal and developmental Pb toxicity.


Asunto(s)
Plomo/toxicidad , Exposición Materna/efectos adversos , Efectos Tardíos de la Exposición Prenatal , Taurina/farmacología , Animales , Femenino , Embarazo , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Efectos Tardíos de la Exposición Prenatal/metabolismo , Efectos Tardíos de la Exposición Prenatal/prevención & control , Ratas , Ratas Sprague-Dawley
7.
Zygote ; 29(6): 435-444, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33890561

RESUMEN

Dynamic changes in microRNAs in oocyte and cumulus cells before and after maturation may explain the spatiotemporal post-transcriptional gene regulation within bovine follicular cells during the oocyte maturation process. miR-20a has been previously shown to regulate proliferation and differentiation as well as progesterone levels in cultured bovine granulosa cells. In the present study, we aimed to demonstrate the function of miR-20a during the bovine oocyte maturation process. Maturation of cumulus-oocyte complexes (COCs) was performed at 39°C in an humidified atmosphere with 5% CO2 in air. The expression of miR-20a was investigated in the cumulus cells and oocytes at 22 h post culture. The functional role of miR-20a was examined by modulating the expression of miR-20a in COCs during in vitro maturation (IVM). We found that the miR-20a expression was increased in cumulus cells but decreased in oocytes after IVM. Overexpression of miR-20a increased the oocyte maturation rate. Even though not statistically significant, miR-20a overexpression during IVM increased progesterone levels in the spent medium. This was further supported by the expression of STAR and CYP11A1 genes in cumulus cells. The phenotypes observed due to overexpression of miR-20a were validated by BMP15 supplementation during IVM and subsequent transfection of BMP15-treated COCs using miR-20a mimic or BMPR2 siRNA. We found that miR-20a mimic or BMPR2 siRNA transfection rescued BMP15-reduced oocyte maturation and progesterone levels. We concluded that miR-20a regulates oocyte maturation by increasing cumulus cell progesterone synthesis by simultaneous suppression of BMPR2 expression.


Asunto(s)
Células del Cúmulo , Técnicas de Maduración In Vitro de los Oocitos/veterinaria , MicroARNs , Animales , Bovinos , Femenino , MicroARNs/genética , Oocitos , Oogénesis/genética
8.
Int J Mol Sci ; 22(2)2021 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-33477832

RESUMEN

Mammalian reproductive health affects the entire reproductive cycle starting with the ovarian function through implantation and fetal growth. Various environmental and physiological factors contribute to disturbed reproductive health status leading to infertility problems in mammalian species. In the last couple of decades a significant number of studies have been conducted to investigate the transcriptome of reproductive tissues and organs in relation to the various reproductive health issues including endometritis, polycystic ovarian syndrome (PCOS), intrauterine growth restriction (IUGR), preeclampsia, and various age-associated reproductive disorders. Among others, the post-transcriptional regulation of genes by small noncoding miRNAs contributes to the observed transcriptome dysregulation associated with reproductive pathophysiological conditions. MicroRNAs as a class of non-coding RNAs are also known to be involved in various pathophysiological conditions either in cellular cytoplasm or they can be released to the extracellular fluid via membrane-bounded extracellular vesicles and proteins. The present review summarizes the cellular and extracellular miRNAs and their association with the etiology of major reproductive pathologies including PCOS, endometritis, IUGR and age-associated disorders in various mammalian species.


Asunto(s)
Genitales/metabolismo , MicroARNs/genética , Reproducción/genética , Salud Reproductiva , Animales , Implantación del Embrión/genética , Femenino , Regulación de la Expresión Génica/genética , Redes Reguladoras de Genes/genética , Humanos , Síndrome del Ovario Poliquístico/genética , Síndrome del Ovario Poliquístico/patología , Embarazo
9.
Reprod Fertil Dev ; 34(2): 174-189, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35231266

RESUMEN

Extracellular vesicles (EVs), which contain various functional classes of vesicles, namely exosomes, microvesicles, and apoptotic bodies, represent the major nano-shuttle to transfer bioactive molecules from donor to recipient cells to facilitate cell-to-cell communication in the follicular, oviduct, and uterine microenvironments. In addition to transferring various molecular cargos in the form of miRNAs, mRNAs, proteins, lipids, and DNA molecules, the relative proportion of those molecular cargos in the reproductive fluids can be associated with the physiological and pathological condition of the host animal. Inside the follicle, EV-mediated circulation of miRNAs has been reported to be associated with the growth status of the enclosed oocytes, the metabolic status, and the advanced maternal aging of the animal. Importantly, EVs have the potential to protect their cargo molecules from extracellular degradation or modification while travelling to the recipient cells. This fact together with the enormous availability in almost all biological fluids and spent culture media make them attractive in the search for biomarkers of oocyte/embryo developmental competence, receptive maternal environment and a multitude of reproductive pathophysiological conditions. One of the key factors that have contributed to the lower efficiency of assisted reproductive technologies (ART) is the absence of several maternal in vivo factors in the ART procedures. For this, several studies have been conducted to supplement various components present in the follicular and oviductal fluids into the existing ART procedures and significant positive impacts have been observed in terms of embryo cleavage rate, blastocyst rate, resistance to stress, and survival after cryopreservation. The potential of EVs in shuttling protective messages against environmental and physiological stressors has been evidenced. The effective use of the EV-coupled molecular signals against stress-associated conditions has the potential to pave the path for the application of these protective signals against oxidative stress-associated pathological conditions including PCOS, ageing, and endometritis. In this review, we provide current knowledge and potential future use of EVs as remedies in reproductive pathophysiological conditions, mainly in follicular and oviductal microenvironments.


Asunto(s)
Vesículas Extracelulares , Animales , Embrión de Mamíferos , Vesículas Extracelulares/metabolismo , Femenino , Humanos , Oocitos , Oogénesis , Reproducción
10.
Front Vet Sci ; 7: 602043, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33330723

RESUMEN

Extracellular vesicles are evolutionarily conserved nano-sized phospholipid membraned structures and released from virtually all types of cells into the extracellular space. Their ability to carry various molecular cargos (mRNA, miRNA, proteins, and lipids) from one cell to the other to exert functional impact on the target cells enables them to play a significant role in cell to cell communication during follicular development. As the molecular signals carried by extracellular vesicles reflect the physiological status of the cells of origin, they are expected to mediate any effect of environmental or metabolic stress on the follicualr cells and the growing oocyte. Recent studies have evidenced that reproductive cells exposed to various environmental stressors (heat and oxidative stress) released extracellular vesicles enriched with mRNA and miRNA associated with stress response mechanisms. Moreover, the metabolic status of post-calving cows could be well-reflected in the follicular extracellular vesicle's miRNA profile, which signified the potential role of extracellular cellular vesicle molecular signals in mediating the effect of metabolic stress on follicular and oocyte development. In the present review, the potential role of extracellular vesicles in mediating the effect of environmental and metabolic stress in various reproductive cells and oocytes are thoroughly discussed Moreover, considering the importance of extracellular vesicles in shuttling protective or rescuing molecular signals during stress, their potential usage as means of targeted delivery of molecules to mitigate the effect of stress on oocytes are addressed as the focus of future research.

11.
Sci Rep ; 10(1): 15824, 2020 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-32978452

RESUMEN

Elevated summer temperature is reported to be the leading cause of stress in dairy and beef cows, which negatively affects various reproductive functions. Follicular cells respond to heat stress (HS) by activating the expression of heat shock family proteins (HSPs) and other antioxidants. HS is reported to negatively affect the bi-directional communication between the follicular cells and the oocyte, which is partly mediated by follicular fluid extracellular vesicles (EVs) released from surrounding cells. As carriers of bioactive molecules (DNA, RNA, protein, and lipids), the involvement of EVs in mediating the stress response in follicular cells is not fully understood. Here we used an in vitro model to decipher the cellular and EV-coupled miRNAs of bovine granulosa cells in response to HS. Moreover, the protective role of stress-related EVs against subsequent HS was assessed. For this, bovine granulosa cells from smaller follicles were cultured in vitro and after sub-confluency, cells were either kept at 37 °C or subjected to HS (42 °C). Results showed that granulosa cells exposed to HS increased the accumulation of ROS, total oxidized protein, apoptosis, and the expression of HSPs and antioxidants, while the viability of cells was reduced. Moreover, 14 and 6 miRNAs were differentially expressed in heat-stressed granulosa cells and the corresponding EVs, respectively. Supplementation of stress-related EVs in cultured granulosa cells has induced adaptive response to subsequent HS. However, this potential was not pronounced when the cells were kept under 37 °C. Taking together, EVs generated from granulosa cells exposed to HS has the potential to shuttle bioactive molecules to recipient cells and make them robust to subsequent HS.


Asunto(s)
Enfermedades de los Bovinos/prevención & control , Vesículas Extracelulares/metabolismo , Células de la Granulosa/metabolismo , Trastornos de Estrés por Calor/veterinaria , Respuesta al Choque Térmico , Folículo Ovárico/metabolismo , Animales , Apoptosis , Bovinos , Enfermedades de los Bovinos/epidemiología , Enfermedades de los Bovinos/genética , Vesículas Extracelulares/genética , Vesículas Extracelulares/patología , Femenino , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Células de la Granulosa/patología , Trastornos de Estrés por Calor/genética , Trastornos de Estrés por Calor/fisiopatología , Folículo Ovárico/patología
12.
Reprod Domest Anim ; 55(10): 1275-1285, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32323384

RESUMEN

Nrf2 is a master regulator for antioxidant machinery against oxidative stress in bovine preimplantation embryos. The endogenous or exogenous modulation of Nrf2-KEAP1 system in bovine embryos may contribute to the understanding of the mechanisms behind the response of embryos to stress conditions. Therefore, here we aimed to investigate the protective effect of quercetin on bovine preimplantation embryos exposed to higher atmospheric oxygen concentration. For that, blastocysts, which were developed from zygotes cultured in media supplemented with or without quercetin under high oxygen level (20%), were subjected intracellular ROS level and mitochondrial analysis, and determining blastocyst formation rate and total cell number. Moreover, mRNA and protein expression level of Nrf2 and selected downstream antioxidant genes were investigated in the resulting blastocysts. Quercetin supplementation in vitro culture did not affect cleavage and blastocyst rate until day 7. However, quercetin supplementation resulted in higher blastocyst total cell number and reduction of intracellular ROS level accompanied by increasing mitochondrial activity compared with control group in both day 7 and day 8 blastocysts. Moreover, quercetin supplementation induced mRNA and protein of Nrf2 with subsequent increase in the expression of downstream antioxidants namely: NQO1, PRDX1, CAT and SOD1 antioxidants. In conclusion, quercetin protects preimplantation embryos against oxidative stress and improves embryo viability through modulation of the Nrf2 signalling pathway.


Asunto(s)
Desarrollo Embrionario/efectos de los fármacos , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo/efectos de los fármacos , Quercetina/farmacología , Animales , Antioxidantes/farmacología , Blastocisto , Bovinos , Técnicas de Cultivo de Embriones/veterinaria , Embrión de Mamíferos , Factor 2 Relacionado con NF-E2/genética , Especies Reactivas de Oxígeno , Transducción de Señal
13.
Cell Tissue Res ; 380(3): 643-655, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32185525

RESUMEN

Lead (Pb), one of the pervasive and protracted environmental heavy metals, is believed to affect the female reproductive system in many species. The Nrf2 and NF-κB are the two key transcriptional factors regulating cellular redox status and response against stress and inflammation respectively, showing an interaction between each other. The aim of this study is to investigate the effect of Pb on bovine granulosa cells (GCs) and its association with the regulation of Nrf2 and NF-κB pathways. For this, bovine GCs were cultured in vitro and exposed to different doses of Pb for 2 h. Cellular response to Pb insult was investigated 24 h post treatment. Results showed that exposure of GCs to Pb-induced ROS accumulation and protein carbonylation. Additionally, GCs exhibited reduction in cell viability and decrease in the expression of cell proliferation marker genes (CCND2 and PCNA). This was accompanied by cell cycle arrest at G0/G1 phase. Moreover, Pb downregulated both Nrf2 and NF-κB and their downstream genes. Lead increased the expression of endoplasmic reticulum (ER) stress marker genes (GRP78 and CHOP) and the proapoptotic gene (caspase-3) while the antiapoptotic gene (BCL-2) was reduced. Our findings suggest that Pb-driven oxidative stress affected GCs proliferation, enhances ER stress, induces cell cycle arrest and mediates apoptosis probably via disruption of Nrf2/NF-κB cross-talk. However, further functional analysis is required to explain different aspects of Nrf2 and NF-κB interactions under metal challenge.


Asunto(s)
Supervivencia Celular/efectos de los fármacos , Células de la Granulosa , Plomo/toxicidad , Factor 2 Relacionado con NF-E2/metabolismo , FN-kappa B/metabolismo , Estrés Oxidativo/efectos de los fármacos , Animales , Bovinos , Células Cultivadas , Estrés del Retículo Endoplásmico/efectos de los fármacos , Femenino , Células de la Granulosa/efectos de los fármacos , Células de la Granulosa/metabolismo , Especies Reactivas de Oxígeno/metabolismo
14.
Sci Rep ; 10(1): 2345, 2020 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-32047242

RESUMEN

Dietary intake in early lactating cows is outmatched by milk production. These cows experience a negative energy balance, resulting in a distinct blood metabolism and poor reproductive function due to impaired ovulation and increased embryo loss. We hypothesize that oocytes from lactating cows undergoing transient metabolic stress exhibit a different epigenetic profile crucial for developmental competence. To investigate this, we collected oocytes from metabolically-profiled cows at early- and mid-postpartum stages and characterized their epigenetic landscape compared with control heifers using whole-genome bisulfite sequencing. Early-postpartum cows were metabolically deficient with a significantly lower energy balance and significantly higher concentrations of non-esterified fatty acids and beta-hydroxybutyrate than mid-postpartum animals and control heifers. Accordingly, 32,990 early-postpartum-specific differentially methylated regions (DMRs) were found in genes involved in metabolic pathways, carbon metabolism, and fatty acid metabolism, likely descriptive of the epigenetic regulation of metabolism in early-postpartum oocytes. DMRs found overlapping CpG islands and exons of imprinted genes such as MEST and GNAS in early-postpartum oocytes suggest that early lactation metabolic stress may affect imprint acquisition, which could explain the embryo loss. This whole-genome approach introduces potential candidate genes governing the link between metabolic stress and the reproductive outcome of oocytes.


Asunto(s)
Metilación de ADN , Epigénesis Genética , Regulación de la Expresión Génica , Genoma , Lactancia , Metaboloma , Oocitos/metabolismo , Animales , Bovinos , Islas de CpG , Femenino , Oocitos/citología , Periodo Posparto
15.
Theriogenology ; 150: 70-74, 2020 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-32088041

RESUMEN

The bidirectional communication between the oocyte and the companion somatic cells in the follicular environment is known to be mediated by either a direct communication via gap junction or transzonal projections or indirectly through endocrine, paracrine and autocrine signaling factors. Extracellular vesicles (EVs), which are found in various biological fluids, including follicular fluid (FF) are known to play important roles in mediating the communication between the oocyte and the surrounding somatic cells through shuttling bioactive molecules to facilitate follicular growth and oocyte maturation. As vesicles in the extracellular space are known to reflect the physiological status of the donor or the releasing cells, molecules carried by the EVs in the follicular environment could be markers of the internal and external stressors. EVs exhibit greater degree of heterogeneity in their size, biogenesis and the bioactive molecule they carry. The process of biogenesis of EVs is known to be regulated by several proteins associated with the endosomal sorting complex required for transport (ESCRT) proteins. The type of EVs and surface proteins markers vary according to the type of protein involved in their biogenesis. EVs are recently reported to play indispensable role in promoting cell-to-cell communication during follicular growth. Recent advancements in EV research opened the possibilities to load EVs with specific molecules like miRNA, siRNA, CRISPR-cas9 complex and protein, which showed a new horizon for their application in therapeutics. The present review explores the biogenesis, the role and the future prospects of EVs with a special emphasis given to follicular growth and oocyte maturation.


Asunto(s)
Vesículas Extracelulares/fisiología , Oocitos/crecimiento & desarrollo , Folículo Ovárico/fisiología , Transducción de Señal/fisiología , Animales , Femenino
16.
Int J Mol Sci ; 21(2)2020 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-31963271

RESUMEN

The genetic codes inscribed during two key developmental processes, namely gametogenesis and embryogenesis, are believed to determine subsequent development and survival of adult life. Once the embryo is formed, its further development mainly depends on its intrinsic characteristics, maternal environment (the endometrial receptivity), and the embryo-maternal interactions established during each phase of development. These developmental processes are under strict genetic regulation that could be manifested temporally and spatially depending on the physiological and developmental status of the cell. MicroRNAs (miRNAs), one of the small non-coding classes of RNAs, approximately 19-22 nucleotides in length, are one of the candidates for post-transcriptional developmental regulators. These tiny non-coding RNAs are expressed in ovarian tissue, granulosa cells, testis, oocytes, follicular fluid, and embryos and are implicated in diverse biological processes such as cell-to-cell communication. Moreover, accumulated evidences have also highlighted that miRNAs can be released into the extracellular environment through different mechanisms facilitating intercellular communication. Therefore, understanding miRNAs mediated regulatory mechanisms during gametogenesis and embryogenesis provides further insights about the molecular mechanisms underlying oocyte/sperm formation, early embryo development, and implantation. Thus, this review highlights the role of miRNAs in mammalian gametogenesis and embryogenesis and summarizes recent findings about miRNA-mediated post-transcriptional regulatory mechanisms occurring during early mammalian development.


Asunto(s)
Gametogénesis/fisiología , MicroARNs/metabolismo , Animales , Implantación del Embrión , Embrión de Mamíferos/metabolismo , Desarrollo Embrionario/genética , Desarrollo Embrionario/fisiología , Femenino , Fertilidad/genética , Fertilidad/fisiología , Gametogénesis/genética , Masculino , MicroARNs/genética
17.
Mol Reprod Dev ; 86(12): 2005-2019, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31544319

RESUMEN

Sexually dimorphic differences in genome activity, which is orchestrated by transcription factors (TFs), could explain the differential response of male and female embryos to environmental stressors. To proof this hypothesis, the expression of cellular and extracellular TFs was investigated in male and female bovine embryos in vitro cultured either under low (5%) or high (20%) oxygen levels. The intracellular reactive oxygen species (ROS), total cell number, expression of nuclear factor (erythroid-derived 2) factor 2 (NFE2L2), Krüppel-like factor 4 (KLF4), notch receptor 1 (NOTCH1), E2F transcription factor 1 (E2F1), and SREBF2 along with extracellular vesicles (EVs) biogenesis genes were assessed at the blastocyst stage and their released EVs. Low blastocyst rate in both sexes due to oxidative stress (OS) was accompanied by increased ROS accumulation and reduced cell number in female embryos. The messenger RNA and protein levels of NFE2L2, as well as KLF4 expression, were higher in male embryos exposed to OS compared with female embryos. However, the expression of NOTCH1 and E2F1 was higher in female embryos cultured in high oxygen level. Male embryos exposed to OS released more EVs enriched with NFE2L2, superoxide dismutase 1, and NOTCH1 accompanied by elevated expression of EVs biogenesis genes. Accordingly, differential expression of TFs and their release into spent media could partially explain the sexual dimorphic response of bovine embryos to environmental stresses.


Asunto(s)
Embrión de Mamíferos/metabolismo , Regulación del Desarrollo de la Expresión Génica , Estrés Oxidativo , Caracteres Sexuales , Animales , Bovinos
18.
Sci Rep ; 9(1): 12851, 2019 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-31492906

RESUMEN

Most high-yielding dairy cows enter a state of negative energy balance (NEB) during early lactation. This, in turn, results in changes in the level of various metabolites in the blood and follicular fluid microenvironment which contributes to disturbed fertility. Extracellular vesicles (EVs) are evolutionarily conserved communicasomes that transport cargo of miRNA, proteins and lipids. EV-coupled miRNAs have been reported in follicular fluid. However, the association between postpartum NEB and EV-coupled miRNA signatures in follicular fluid is not yet known. Energy balance analysis in lactating cows shortly after post-calving revealed that the majority of the cows exhibited transiently negative energy balance levels, whereas the remaining cows exhibited either consistently negative or consistently positive energy levels. Metabolic status was associated with EV-coupled miRNA composition in the follicular fluid. Cows experiencing NEB showed reduced expression of a large number of miRNAs while cows with positive energy balances primarily exhibited elevated expression of EV-coupled miRNAs. The miRNAs that were suppressed under NEB were found to be involved in various metabolic pathways. This is the first study to reveal the presence of an association between EV-coupled miRNA in follicular fluid and metabolic stress in dairy cows. The involvement of differentially expressed miRNAs in various pathways associated with follicular growth and oocyte maturation suggest the potential involvement of specific follicular miRNAs in oocyte developmental competence, which may partially explain reduced fertility in cows due to post-calving metabolic stress.


Asunto(s)
Bovinos/genética , Bovinos/metabolismo , Vesículas Extracelulares/genética , Líquido Folicular/metabolismo , Perfilación de la Expresión Génica , MicroARNs/genética , Animales , Metabolismo Energético/genética , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/ultraestructura , Femenino , Lactancia/metabolismo , Metaboloma , MicroARNs/metabolismo , Periodo Posparto/sangre , Periodo Posparto/metabolismo
19.
Int J Mol Sci ; 20(7)2019 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-30986945

RESUMEN

Nrf2 is a redox sensitive transcription factor regulating the expression of antioxidant genes as defense mechanism against various stressors. The aim of this study is to investigate the potential role of noncoding miRNAs as endogenous and quercetin as exogenous regulators of Nrf2 pathway in bovine granulosa cells. For this cultured granulosa cells were used for modulation of miRNAs (miR-28, 153 and miR-708) targeting the bovine Nrf2 and supplementation of quercentin to investigate the regulatory mechanisms of the Nrf2 antioxidant system. Moreover, cultured cells were treated with hydrogen peroxide to induce oxidative stress in those cells. Our results showed that, oxidative stress activated the expression of Nrf2 as a defense mechanism, while suppressing the expression of those miRNAs. Overexpression of those miRNAs resulted in downregulation of Nrf2 expression resulted in higher ROS accumulation, reduced mitochondrial activity and cellular proliferation. Quercetin supplementation showed its protective role against oxidative stress induced by H2O2 by inducing the expression of antioxidant enzymes. In conclusion, this study highlighted the involvement of miR-153, miR-28 and miR-708 in regulatory network of Nrf2 mediated antioxidant system in bovine granulosa cells function. Furthermore, quercetin at a low dose played a protective role in bovine granulosa cells against oxidative stress damage.


Asunto(s)
Células de la Granulosa/metabolismo , Células de la Granulosa/patología , Factor 2 Relacionado con NF-E2/metabolismo , Ovario/patología , Ovario/fisiopatología , Estrés Oxidativo , Animales , Antioxidantes/metabolismo , Secuencia de Bases , Bovinos , Proliferación Celular , Femenino , Técnicas de Silenciamiento del Gen , Peróxido de Hidrógeno/toxicidad , MicroARNs/genética , MicroARNs/metabolismo , Mitocondrias/metabolismo , Modelos Biológicos , Factor 2 Relacionado con NF-E2/genética , Estrés Oxidativo/efectos de los fármacos , Quercetina/farmacología , ARN Mensajero/genética , ARN Mensajero/metabolismo
20.
Theriogenology ; 121: 196-203, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30172131

RESUMEN

Confirmation of the pregnancy establishment at the very earliest day post-insemination increases the reproduction efficiency of high yielding dairy cows and farm profitability by allowing rebreeding of the non-pregnant cows. Inaccuracies in the currently available pregnancy detection tools to detect pregnancy establishment within the first 3 weeks post insemination extends the inter-calving interval and have contributed to the decline in profitability. Thus, development of non-invasive early pregnancy detection biomarkers could be proposed as alternative tools. MicroRNAs (miRNAs), a subclass of small non-coding RNAs are abundantly expressed in virtually all bio fluids circulation and have been associated with various pregnancy-related pathophysiological conditions. The study aimed to determine the expression of circulatory miRNAs in serum samples of pregnant and non-pregnant cows at day 19 and 24 post-insemination. Lactating Holstein-Friesian cows were estrous synchronized and inseminated with frozen semen. Blood samples were taken 19 and 24 days post-insemination. Serum samples were retrospectively categorized according to the pregnancy status of cows diagnosed 35 later using ultrasonography. Total RNA enriched with miRNAs was isolated from pooled (4 animals/pool) serum samples of pregnant and non-pregnant cows and subjected to cDNA synthesis. The expression of circulatory miRNAs was performed using PCR array containing primers 748 mature miRNAs. Results showed that a total of 302 and 316 miRNAs were detected in day 19 pregnant and non-pregnant cows, respectively. Similarly, 356 and 325 miRNAs were detected in day 24 pregnant and non-pregnant cows, respectively. Principal component analysis showed clear separation between pregnant and non-pregnant cows both at 19 and 24 days. We identified 8 and 23 differentially expressed miRNAs in the serum of pregnant cows of day 19 and 24, respectively. Interestingly, miR-433 and 4 other miRNAs (miR-487b, miR-495-3p, miR-376b-3p, and miR-323a-3p), which are homologous to the human pregnancy-associated C14MC miRNAs were among the differentially expressed miRNAs in day 19 and 24 pregnant cows, respectively. The adherens junction and ECM-interaction are among the pathways significantly enriched by predicted target genes of differentially expressed miRNAs. In conclusion, the expression of circulatory miRNAs in maternal blood serum of pregnant and non-pregnant cows showed distinct expression pattern and could suggest their potential involvement in early pregnancy establishment.


Asunto(s)
Bovinos/sangre , MicroARNs/sangre , Preñez/sangre , Animales , Biomarcadores/sangre , Bovinos/genética , Sincronización del Estro , Femenino , Embarazo , Pruebas de Embarazo/métodos , Pruebas de Embarazo/veterinaria , Preñez/genética , Análisis de Componente Principal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...