Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Geophys Res Atmos ; 126(18): e2021JD035314, 2021 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-35859619

RESUMEN

We present an analysis of sea breeze conditions for the Boston region and examine their impact on the concentration of local air pollutants over the past decade. Sea breezes occur about one-third of the days during the summer and play an important role in the spatial distribution and temporal evolution of NO2 and O3 across the urban area. Mornings preceding a sea breeze are characterized by low horizontal wind speeds, low background O3, and an accumulation of local primary emissions. Air pollution is recirculated inland during sea breezes, frequently coinciding with the highest O3 measured at the urban center. We use "Ox" (= NO2 + O3) to account for temporary O3 suppression by NO and find large horizontal gradients (differences in Ox greater than 30 ppb across less than 15 km), which are not observed on otherwise westerly or easterly prevailing days. This implies a challenge in surface monitoring networks to adequately represent the spatial variability of secondary air pollution in coastal urban areas. We investigate satellite-based climatologies of tropospheric NO2, and find evidence of selection biases due to cloud conditions, but show that sea breeze days are well observed due to the fair weather conditions generally associated with these events. The fine scale of the sea breeze in Boston is not reliably represented by meteorological reanalyses products commonly used in chemical transport models required to provide inputs for the satellite-based retrievals. This implies a higher systematic error in the operational retrievals on sea breeze days compared to other days.

2.
Environ Sci Technol ; 54(16): 9882-9895, 2020 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-32806912

RESUMEN

Houston, Texas is a major U.S. urban and industrial area where poor air quality is unevenly distributed and a disproportionate share is located in low-income, non-white, and Hispanic neighborhoods. We have traditionally lacked city-wide observations to fully describe these spatial heterogeneities in Houston and in cities globally, especially for reactive gases like nitrogen dioxide (NO2). Here, we analyze novel high-spatial-resolution (250 m × 500 m) NO2 vertical columns measured by the NASA GCAS airborne spectrometer as part of the September-2013 NASA DISCOVER-AQ mission and discuss differences in population-weighted NO2 at the census-tract level. Based on the average of 35 repeated flight circuits, we find 37 ± 6% higher NO2 for non-whites and Hispanics living in low-income tracts (LIN) compared to whites living in high-income tracts (HIW) and report NO2 disparities separately by race ethnicity (11-32%) and poverty status (15-28%). We observe substantial time-of-day and day-to-day variability in LIN-HIW NO2 differences (and in other metrics) driven by the greater prevalence of NOx (≡NO + NO2) emission sources in low-income, non-white, and Hispanic neighborhoods. We evaluate measurements from the recently launched satellite sensor TROPOMI (3.5 km × 7 km at nadir), averaged to 0.01° × 0.01° using physics-based oversampling, and demonstrate that TROPOMI resolves similar relative, but not absolute, tract-level differences compared to GCAS. We utilize the high-resolution FIVE and NEI NOx inventories, plus one year of TROPOMI weekday-weekend variability, to attribute tract-level NO2 disparities to industrial sources and heavy-duty diesel trucking. We show that GCAS and TROPOMI spatial patterns correspond to the surface patterns measured using aircraft profiling and surface monitors. We discuss opportunities for satellite remote sensing to inform decision making in cities generally.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Ciudades , Monitoreo del Ambiente , Dióxido de Nitrógeno/análisis , Tecnología de Sensores Remotos , Factores Socioeconómicos , Texas
3.
Environ Sci Technol ; 53(9): 4695-4706, 2019 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-30968688

RESUMEN

Drought conditions affect ozone air quality, potentially altering multiple terms in the O3 mass balance equation. Here, we present a multiyear observational analysis using data collected before, during, and after the record-breaking California drought (2011-2015) at the O3-polluted locations of Fresno and Bakersfield near the Sierra Nevada foothills. We separately assess drought influences on O3 chemical production ( PO3) from O3 concentration. We show that isoprene concentrations, which are a source of O3-forming organic reactivity, were relatively insensitive to early drought conditions but decreased by more than 50% during the most severe drought years (2014-2015), with recovery a function of location. We find drought-isoprene effects are temperature-dependent, even after accounting for changes in leaf area, consistent with laboratory studies but not previously observed at landscape scales with atmospheric observations. Drought-driven decreases in organic reactivity are contemporaneous with a change in dominant oxidation mechanism, with PO3 becoming more NO x-suppressed, leading to a decrease in PO3 of ∼20%. We infer reductions in atmospheric O3 loss of ∼15% during the most severe drought period, consistent with past observations of decreases in O3 uptake by plants. We consider drought-related trends in O3 variability on synoptic time scales by analyzing statistics of multiday high-O3 events. We discuss implications for regulating O3 air pollution in California and other locations under more prevalent drought conditions.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Ozono , California , Sequías , Nevada
4.
Environ Sci Technol ; 51(12): 6957-6964, 2017 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-28520422

RESUMEN

Nitrogen dioxide is a common air pollutant with growing evidence of health impacts independent of other common pollutants such as ozone and particulate matter. However, the worldwide distribution of NO2 exposure and associated impacts on health is still largely uncertain. To advance global exposure estimates we created a global nitrogen dioxide (NO2) land use regression model for 2011 using annual measurements from 5,220 air monitors in 58 countries. The model captured 54% of global NO2 variation, with a mean absolute error of 3.7 ppb. Regional performance varied from R2 = 0.42 (Africa) to 0.67 (South America). Repeated 10% cross-validation using bootstrap sampling (n = 10,000) demonstrated a robust performance with respect to air monitor sampling in North America, Europe, and Asia (adjusted R2 within 2%) but not for Africa and Oceania (adjusted R2 within 11%) where NO2 monitoring data are sparse. The final model included 10 variables that captured both between and within-city spatial gradients in NO2 concentrations. Variable contributions differed between continental regions, but major roads within 100 m and satellite-derived NO2 were consistently the strongest predictors. The resulting model can be used for global risk assessments and health studies, particularly in countries without existing NO2 monitoring data or models.


Asunto(s)
Contaminantes Atmosféricos , Monitoreo del Ambiente , Dióxido de Nitrógeno , África , Contaminación del Aire , Asia , Europa (Continente) , Humanos , América del Norte , Material Particulado , América del Sur
5.
Environ Sci Technol ; 50(17): 9142-9, 2016 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-27442110

RESUMEN

Characteristics of urban areas, such as density and compactness, are associated with local air pollution concentrations. The potential for altering air pollution through changing urban characteristics, however, is less certain, especially for expanding cities within the developing world. We examined changes in urban characteristics from 2000 to 2010 for 830 cities in East Asia to evaluate associations with changes in nitrogen dioxide (NO2) and fine particulate matter (PM2.5) air pollution. Urban areas were stratified by population size into small (100 000-250 000), medium, (250 000-1 000 000), and large (>1 000 000). Multivariate regression models including urban baseline characteristics, meteorological variables, and change in urban characteristics explained 37%, 49%, and 54% of the change in NO2 and 29%, 34%, and 37% of the change in PM2.5 for small, medium and large cities, respectively. Change in lights at night strongly predicted change in NO2 and PM2.5, while urban area expansion was strongly associated with NO2 but not PM2.5. Important differences between changes in urban characteristics and pollutant levels were observed by city size, especially NO2. Overall, changes in urban characteristics had a greater impact on NO2 and PM2.5 change than baseline characteristics, suggesting urban design and land use policies can have substantial impacts on local air pollution levels.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Asia , Monitoreo del Ambiente , Dióxido de Nitrógeno , Material Particulado
6.
Environ Health Perspect ; 124(3): 281-9, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26241114

RESUMEN

BACKGROUND: Air pollution is associated with morbidity and premature mortality. Satellite remote sensing provides globally consistent decadal-scale observations of ambient nitrogen dioxide (NO2) pollution. OBJECTIVE: We determined global population-weighted annual mean NO2 concentrations from 1996 through 2012. METHODS: We used observations of NO2 tropospheric column densities from three satellite instruments in combination with chemical transport modeling to produce a global 17-year record of ground-level NO2 at 0.1° × 0.1° resolution. We calculated linear trends in population-weighted annual mean NO2 (PWMNO2) concentrations in different regions around the world. RESULTS: We found that PWMNO2 in high-income North America (Canada and the United States) decreased more steeply than in any other region, having declined at a rate of -4.7%/year [95% confidence interval (CI): -5.3, -4.1]. PWMNO2 decreased in western Europe at a rate of -2.5%/year (95% CI: -3.0, -2.1). The highest PWMNO2 occurred in high-income Asia Pacific (predominantly Japan and South Korea) in 1996, with a subsequent decrease of -2.1%/year (95% CI: -2.7, -1.5). In contrast, PWMNO2 almost tripled in East Asia (China, North Korea, and Taiwan) at a rate of 6.7%/year (95% CI: 6.0, 7.3). The satellite-derived estimates of trends in ground-level NO2 were consistent with regional trends inferred from data obtained from ground-station monitoring networks in North America (within 0.7%/year) and Europe (within 0.3%/year). Our rankings of regional average NO2 and long-term trends differed from the satellite-derived estimates of fine particulate matter reported elsewhere, demonstrating the utility of both indicators to describe changing pollutant mixtures. CONCLUSIONS: Long-term trends in satellite-derived ambient NO2 provide new information about changing global exposure to ambient air pollution. Our estimates are publicly available at http://fizz.phys.dal.ca/~atmos/martin/?page_id=232.


Asunto(s)
Contaminantes Atmosféricos/análisis , Exposición a Riesgos Ambientales/estadística & datos numéricos , Dióxido de Nitrógeno/análisis , Imágenes Satelitales , Contaminación del Aire/estadística & datos numéricos , Atmósfera/química , Exposición a Riesgos Ambientales/análisis , Monitoreo del Ambiente , Humanos , Modelos Químicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...