Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Am J Pathol ; 193(1): 11-26, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36243043

RESUMEN

Patients with cholestatic liver disease, including those with primary biliary cholangitis, can experience symptoms of impaired cognition or brain fog. This phenomenon remains unexplained and is currently untreatable. Bile duct ligation (BDL) is an established rodent model of cholestasis. In addition to liver changes, BDL animals develop cognitive symptoms early in the disease process (before development of cirrhosis and/or liver failure). The cellular mechanisms underpinning these cognitive symptoms are poorly understood. Herein, the study explored the neurocognitive symptom manifestations, and tested potential therapies, in BDL mice, and used human neuronal cell cultures to explore translatability to humans. BDL animals exhibited short-term memory loss and showed reduced astrocyte coverage of the blood-brain barrier, destabilized hippocampal network activity, and neuronal senescence. Ursodeoxycholic acid (first-line therapy for most human cholestatic diseases) did not reverse symptomatic or mechanistic aspects. In contrast, obeticholic acid (OCA), a farnesoid X receptor agonist and second-line anti-cholestatic agent, normalized memory function, suppressed blood-brain barrier changes, prevented hippocampal network deficits, and reversed neuronal senescence. Co-culture of human neuronal cells with either BDL or human cholestatic patient serum induced cellular senescence and increased mitochondrial respiration, changes that were limited again by OCA. These findings provide new insights into the mechanism of cognitive symptoms in BDL animals, suggesting that OCA therapy or farnesoid X receptor agonism could be used to limit cholestasis-induced neuronal senescence.


Asunto(s)
Colestasis , Memoria a Corto Plazo , Humanos , Ratones , Animales , Colestasis/tratamiento farmacológico , Ácido Quenodesoxicólico/farmacología , Conductos Biliares/cirugía , Hígado , Ligadura
2.
Liver Cancer ; 11(6): 540-557, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36589727

RESUMEN

Introduction: Heparin sulphate proteoglycans in the liver tumour microenvironment (TME) are key regulators of cell signalling, modulated by sulfatase-2 (SULF2). SULF2 overexpression occurs in hepatocellular carcinoma (HCC). Our aims were to define the nature and impact of SULF2 in the HCC TME. Methods: In liver biopsies from 60 patients with HCC, expression and localization of SULF2 were analysed associated with clinical parameters and outcome. Functional and mechanistic impacts were assessed with immunohistochemistry (IHC), in silico using The Cancer Genome Atlas (TGCA), in primary isolated cancer activated fibroblasts, in monocultures, in 3D spheroids, and in an independent cohort of 20 patients referred for sorafenib. IHC targets included αSMA, glypican-3, ß-catenin, RelA-P-ser536, CD4, CD8, CD66b, CD45, CD68, and CD163. SULF2 impact of peripheral blood mononuclear cells was assessed by migration assays, with characterization of immune cell phenotype using fluorescent activated cell sorting. Results: We report that while SULF2 was expressed in tumour cells in 15% (9/60) of cases, associated with advanced tumour stage and type 2 diabetes, SULF2 was more commonly expressed in cancer-associated fibroblasts (CAFs) (52%) and independently associated with shorter survival (7.2 vs. 29.2 months, p = 0.003). Stromal SULF2 modulated glypican-3/ß-catenin signalling in vitro, although in vivo associations suggested additional mechanisms underlying the CAF-SULF2 impact on prognosis. Stromal SULF2 was released by CAFS isolated from human HCC. It was induced by TGFß1, promoted HCC proliferation and sorafenib resistance, with CAF-SULF2 linked to TGFß1 and immune exhaustion in TGCA HCC patients. Autocrine activation of PDGFRß/STAT3 signalling was evident in stromal cells, with the release of the potent monocyte/macrophage chemoattractant CCL2 in vitro. In human PBMCs, SULF2 preferentially induced the migration of macrophage precursors (monocytes), inducing a phenotypic change consistent with immune exhaustion. In human HCC tissues, CAF-SULF2 was associated with increased macrophage recruitment, with tumouroid studies showing stromal-derived SULF2-induced paracrine activation of the IKKß/NF-κB pathway, tumour cell proliferation, invasion, and sorafenib resistance. Conclusion: SULF2 derived from CAFs modulates glypican-3/ß-catenin signalling but also the HCC immune TME, associated with tumour progression and therapy resistance via activation of the TAK1/IKKß/NF-κB pathway. It is an attractive target for combination therapies for patients with HCC.

4.
Nat Metab ; 2(11): 1350-1367, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33168981

RESUMEN

Fibrosis is a common pathological feature of chronic disease. Deletion of the NF-κB subunit c-Rel limits fibrosis in multiple organs, although the mechanistic nature of this protection is unresolved. Using cell-specific gene-targeting manipulations in mice undergoing liver damage, we elucidate a critical role for c-Rel in controlling metabolic changes required for inflammatory and fibrogenic activities of hepatocytes and macrophages and identify Pfkfb3 as the key downstream metabolic mediator of this response. Independent deletions of Rel in hepatocytes or macrophages suppressed liver fibrosis induced by carbon tetrachloride, while combined deletion had an additive anti-fibrogenic effect. In transforming growth factor-ß1-induced hepatocytes, c-Rel regulates expression of a pro-fibrogenic secretome comprising inflammatory molecules and connective tissue growth factor, the latter promoting collagen secretion from HMs. Macrophages lacking c-Rel fail to polarize to M1 or M2 states, explaining reduced fibrosis in RelΔLysM mice. Pharmacological inhibition of c-Rel attenuated multi-organ fibrosis in both murine and human fibrosis. In conclusion, activation of c-Rel/Pfkfb3 in damaged tissue instigates a paracrine signalling network among epithelial, myeloid and mesenchymal cells to stimulate fibrogenesis. Targeting the c-Rel-Pfkfb3 axis has potential for therapeutic applications in fibrotic disease.


Asunto(s)
Epitelio/patología , Cirrosis Hepática/genética , Cirrosis Hepática/patología , Macrófagos/patología , Proteínas Proto-Oncogénicas c-rel/genética , Animales , Polaridad Celular/genética , Marcación de Gen , Hepatocitos/patología , Hidroxiprolina/metabolismo , Cirrosis Hepática/prevención & control , Regeneración Hepática/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mitosis/genética , Comunicación Paracrina/genética , Fosfofructoquinasa-2/genética , Proteínas Proto-Oncogénicas c-rel/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-rel/metabolismo
5.
Curr Opin Pharmacol ; 49: 95-101, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31731225

RESUMEN

Diseases where fibrosis plays a major role accounts for enormous morbidity and mortality and yet we have very little in our therapeutic arsenal despite decades of research and clinical trials. Our understanding of fibrosis biology is primarily built on data generated in conventional mono-culture or co-culture systems and in vivo model systems. While these approaches have undoubtedly enhanced our understanding of basic mechanisms, they have repeatedly failed to translate to clinical benefit. Recently, there had been a push to generate more physiologically relevant platforms to study fibrosis and identify new therapeutic targets. Here we review the state-of-the-art regarding the development and application of 3D complex cultures, bio-printing and precision cut slices to study pulmonary, hepatic and renal fibrosis.


Asunto(s)
Evaluación Preclínica de Medicamentos/métodos , Fibrosis , Animales , Bioimpresión , Fibrosis/tratamiento farmacológico , Humanos , Esferoides Celulares , Andamios del Tejido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...