Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
RNA ; 6(4): 554-62, 2000 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-10786846

RESUMEN

Ribonuclease P is the enzyme responsible for removing the 5'-leader segment of precursor transfer RNAs in all organisms. All eukaryotic nuclear RNase Ps are ribonucleoproteins in which multiple protein components and a single RNA species are required for activity in vitro as well as in vivo. It is not known, however, which subunits participate directly in phosphodiester-bond hydrolysis. The RNA subunit of nuclear RNase P is evolutionarily related to its catalytically active bacterial counterpart, prompting speculation that in eukaryotes the RNA may be the catalytic component. In the bacterial RNase P reaction, Mg(II) is required to coordinate the nonbridging phosphodiester oxygen(s) of the scissile bond. As a consequence, bacterial RNase P cannot cleave pre-tRNA in which the pro-Rp nonbridging oxygen of the scissile bond is replaced by sulfur. In contrast, the RNase P reaction in plant chloroplasts is catalyzed by a protein enzyme whose mechanism does not involve Mg(II) coordinated by the pro-Rp oxygen. To determine whether the mechanism of nuclear RNase P resembles more closely an RNA- or a protein-catalyzed reaction, we analyzed the ability of Saccharomyces cerevisiae nuclear RNase P to cleave pre-tRNA containing a sulfur substitution of the pro-Rp oxygen at the cleavage site. Sulfur substitution at this position prohibits correct cleavage of pre-tRNA. Cleavage by eukaryotic RNase P thus depends on the presence of a thio-sensitive ligand to the pro-Rp oxygen of the scissile bond, and is consistent with a common, RNA-based mechanism for the bacterial and eukaryal enzymes.


Asunto(s)
Núcleo Celular/enzimología , Endorribonucleasas/química , Endorribonucleasas/metabolismo , Proteínas de Escherichia coli , ARN Catalítico/química , ARN Catalítico/metabolismo , Saccharomyces cerevisiae/enzimología , Secuencia de Bases , Catálisis , Cloruros/metabolismo , Endorribonucleasas/genética , Endorribonucleasas/aislamiento & purificación , Escherichia coli/enzimología , Células Eucariotas/citología , Células Eucariotas/enzimología , Células Eucariotas/metabolismo , Magnesio/metabolismo , Compuestos de Manganeso/metabolismo , Mutación/genética , Conformación de Ácido Nucleico , Compuestos Organotiofosforados/metabolismo , Oxígeno/metabolismo , Precursores del ARN/química , Precursores del ARN/genética , Precursores del ARN/metabolismo , Procesamiento Postranscripcional del ARN , ARN Catalítico/genética , ARN Catalítico/aislamiento & purificación , ARN de Transferencia de Fenilalanina/química , ARN de Transferencia de Fenilalanina/genética , ARN de Transferencia de Fenilalanina/metabolismo , Ribonucleasa P , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Especificidad por Sustrato
2.
RNA ; 6(4): 545-53, 2000 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-10786845

RESUMEN

The transfer RNA 5' maturation enzyme RNase P has been characterized in Bacteria, Archaea, and Eukarya. The purified enzyme from all three kingdoms is a ribonucleoprotein containing an essential RNA subunit; indeed, the RNA subunit of bacterial RNase P RNA is the sole catalytic component. In contrast, the RNase P activity isolated from spinach chloroplasts lacks an RNA component and appears to function as a catalytic protein. Nonetheless, the chloroplast enzyme recognizes a pre-tRNA substrate for E. coli RNase P and cleaves it as efficiently and precisely as does the bacterial enzyme. To ascertain whether there are differences in catalytic mechanism between an all-RNA and an all-protein RNase P, we took advantage of the fact that phosphodiester bond selection and hydrolysis by the E. coli RNase P ribozyme is directed by a Mg2+ ion coordinated to the nonbridging pro-Rp oxygen of the scissile bond, and is blocked by sulfur replacement of this oxygen. We therefore tested the ability of the chloroplast enzyme to process a precursor tRNA containing this sulfur substitution. Partially purified RNase P from spinach chloroplasts can accurately and efficiently process phosphorothioate-substituted pre-tRNAs; cleavage occurs exclusively at the thio-containing scissile bond. The enzymatic throughput is fivefold slower, consistent with a general chemical effect of the phosphorothioate substitution rather than with a metal coordination deficiency. The chloroplast RNase P reaction mechanism therefore does not involve a catalytic Mg2+ bonded to the pro-Rp phosphate oxygen, and hence is distinct from the mechanism of the bacterial ribozyme RNase P.


Asunto(s)
Cloroplastos/enzimología , Precursores del ARN/metabolismo , ARN de Transferencia de Fenilalanina/metabolismo , Ribonucleasas/metabolismo , Spinacia oleracea/enzimología , Secuencia de Bases , Catálisis , Escherichia coli/enzimología , Cinética , Magnesio/metabolismo , Mutación/genética , Compuestos Organotiofosforados/metabolismo , Oxígeno/metabolismo , Precursores del ARN/química , Precursores del ARN/genética , Procesamiento Postranscripcional del ARN , ARN de Transferencia de Fenilalanina/química , ARN de Transferencia de Fenilalanina/genética , Ribonucleasas/aislamiento & purificación , Spinacia oleracea/citología , Especificidad por Sustrato , Azufre/metabolismo , Termodinámica , Levaduras/genética , Zea mays/genética
4.
J Biol Chem ; 274(20): 13824-9, 1999 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-10318787

RESUMEN

It has been suggested that the last seven to nine amino acid residues at the C terminus of the gamma subunit of the ATP synthase act as a spindle for rotation of the gamma subunit with respect to the alpha beta subunits during catalysis (Abrahams, J. P., Leslie, A. G. W., Lutter, R., and Walker, J. E. (1994) Nature 370, 621-628). To test this hypothesis we selectively deleted C-terminal residues from the chloroplast gamma subunit, two at a time starting at the sixth residue from the end and finishing at the 20th residue from the end. The mutant gamma genes were overexpressed in Escherichia coli and assembled with a native alpha3beta3 complex. All the mutant forms of gamma assembled as effectively as the wild-type gamma. Deletion of the terminal 6 residues of gamma resulted in a significant increase (>50%) in the Ca-dependent ATPase activity when compared with the wild-type assembly. The increased activity persisted even after deletion of the C-terminal 14 residues, well beyond the seven residues proposed to form the spindle. Further deletions resulted in a decreased activity to approximately 19% of that of the wild-type enzyme after deleting all 20 C-terminal residues. The results indicate that the tip of the gammaC terminus is not essential for catalysis and raise questions about the role of the C terminus as a spindle for rotation.


Asunto(s)
Cloroplastos/enzimología , ATPasas de Translocación de Protón/química , Secuencia de Aminoácidos , Animales , Bovinos , Inhibidores Enzimáticos/metabolismo , Escherichia coli , Mitocondrias Cardíacas/enzimología , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Conformación Proteica , Pliegue de Proteína , ATPasas de Translocación de Protón/antagonistas & inhibidores , ATPasas de Translocación de Protón/genética , Spinacia oleracea/enzimología , Relación Estructura-Actividad
5.
Biochemistry ; 36(9): 2425-38, 1997 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-9054547

RESUMEN

Ribonuclease P (RNase P) is an essential enzyme whose action produces the mature 5' termini of all cellular and organellar transfer RNA molecules. In bacteria, the catalytic subunit of RNase P is an RNA molecule which by itself can bind substrate pre-tRNA, select and hydrolyze the correct phosphodiester bond, and release product tRNA. The simple requirements of the reaction-a monovalent cation such as K+ or NH4+ and the divalent cation Mg2+ (or Mn2+)-have prompted proposals that all aspects of phosphodiester bond hydrolysis might be accomplished by one or more divalent metal cations coordinated to the enzyme or substrate. To precisely localize the ligands of catalytically-involved Mg2+, we assayed cleavage by Escherichia coli RNase P RNA of pre-tRNA in which specific pro-Rp phosphate oxygens were replaced with sulfur. RNase P cleavage was targeted to that bond, at or nearest to the normal cleavage site, at which Mg2+ or Mn2+ could be coordinated. Single-turnover kinetics demonstrated that the apparent rate constant for the hydrolysis event was determined quantitatively by the affinity of the divalent cation (Mg2+ or Mn2+) for the atom (O or S) at the pro-Rp position of the scissile phosphodiester bond. We propose a model for pre-tRNA cleavage in which an essential Mg2+ ion is coordinated directly to the pro-Rp phosphate oxygen and indirectly to two other ligands near the scissile bond: the upstream ribose 2'-hydroxyl and the downstream purine N7. This catalytic Mg2+ ion most likely positions and deprotonates a water molecule for in-line nucleophilic attack on the scissile bond phosphorus.


Asunto(s)
Endorribonucleasas/química , Proteínas de Escherichia coli , Magnesio , Oxígeno , Fósforo , ARN Catalítico/química , Tionucleótidos/química , Catálisis , Endorribonucleasas/metabolismo , Cinética , Manganeso/fisiología , Precursores del ARN/química , Precursores del ARN/genética , ARN Catalítico/metabolismo , ARN de Transferencia de Fenilalanina/química , ARN de Transferencia de Fenilalanina/genética , Ribonucleasa P , Azufre
6.
J Biol Chem ; 270(29): 17124-32, 1995 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-7615507

RESUMEN

F1F0-ATP synthases utilize protein conformational changes induced by a transmembrane proton gradient to synthesize ATP. The allosteric cooperativity of these multisubunit enzymes presumably requires numerous protein-protein interactions within the enzyme complex. To correlate known in vitro changes in subunit structure with in vivo allosteric interactions, we introduced the beta subunit of spinach chloroplast coupling factor 1 ATP into a bacterial F1 ATP synthase. A cloned atpB gene, encoding the complete chloroplast beta subunit, complemented a chromosomal deletion of the cognate uncD gene in Escherichia coli and was incorporated into a functional hybrid F1 ATP synthase. The cysteine residue at position 63 in chloroplast beta is known to be located at the interface between alpha and beta subunits and to be conformationally coupled, in vitro, to the nucleotide binding site > 40 A away. Enlarging the side chain of chloroplast coupling factor 1 beta residue 63 from Cys to Trp blocked ATP synthesis in vivo without significantly impairing ATPase activity or ADP binding in vitro. The in vivo coupling of nucleotide binding at catalytic sites to transmembrane proton movement may thus involve an interaction, via conformational changes, between the amino-terminal domains of the alpha and beta subunits.


Asunto(s)
Cloroplastos/enzimología , Escherichia coli/enzimología , Prueba de Complementación Genética , ATPasas de Translocación de Protón/química , Adenosina Trifosfato/biosíntesis , Secuencia de Aminoácidos , Secuencia de Bases , Escherichia coli/genética , Datos de Secuencia Molecular , Conformación Proteica , ATPasas de Translocación de Protón/genética , Proteínas Recombinantes de Fusión/química
7.
Nucleic Acids Symp Ser ; (33): 95-8, 1995.
Artículo en Inglés | MEDLINE | ID: mdl-8643412

RESUMEN

Ribonuclease P (RNase P) is the enzyme responsible for endonucleolytically separating the 5'-leader sequence from precursor tRNA molecules. In bacteria, and in the nuclei and mitochondria of all eukaryotes studied so far, RNase P contains an RNA subunit which is necessary for activity in vitro and in vivo. In contrast, we showed earlier that partially-purified RNase P from spinach chloroplasts had physical properties inconsistent with the presence of any RNA. We now report that the properties of the chloroplast enzyme, after 500 to 1500-fold purification, are consistent with enzymatic activity residing in a approximately 70 kDa polypeptide. Gel filtration chromatography on Sephacryl S-200 and S-300 provides a mass for chloroplast RNase P of approximately 70 +/- 5 kDa. A single polypeptide of approximately 70-80 kDa can be crosslinked to iodoUMP-substituted pre-tRNA. The labeling intensity of this polypeptide corresponds closely to the peak of RNase P activity on Sephacryl S-200 chromatography. Unlike the bacterial ribozyme-type RNase P, chloroplast RNase P is not a metalloenzyme. We showed previously that phosphodiester bond cleavage by the E. coli RNA enzyme absolutely requires Mg2+ or Mn2+ coordinated to the pro-Rp oxygen of the scissile phosphodiester phosphate. In contrast, we now find that chloroplast RNase P has no such requirement, and can accurately and efficiently cleave pre-tRNA containing an Rp-thio-substitution at the scissile bond. These data are entirely consistent with the hypothesis that RNase P in plant chloroplasts is not a ribozyme, but a conventional protein enzyme.


Asunto(s)
Cloroplastos/enzimología , Endorribonucleasas/metabolismo , ARN Catalítico/metabolismo , Spinacia oleracea/enzimología , Evolución Biológica , Cromatografía en Gel , Reacciones Cruzadas , Endorribonucleasas/inmunología , Endorribonucleasas/aislamiento & purificación , Epítopos , Humanos , Peso Molecular , Proteínas de Plantas/inmunología , Proteínas de Plantas/aislamiento & purificación , ARN Catalítico/inmunología , ARN Catalítico/aislamiento & purificación , Ribonucleasa P
8.
Mol Biol Rep ; 22(2-3): 147-50, 1995.
Artículo en Inglés | MEDLINE | ID: mdl-8901502

RESUMEN

Chloroplasts of land plants have an active transfer RNA processing system, consisting of an RNase P-like 5' endonuclease, a 3' endonuclease, and a tRNA:CCA nucleotidyltransferase. The specificity of these enzymes resembles more that of their eukaryotic counterparts than that of their cyanobacterial predecessors. Most strikingly, chloroplast RNase P activity almost certainly resides in a protein, rather than in an RNA.protein complex as in Bacteria, Archaea, and Eukarya. The chloroplast enzyme may have evolved from a preexisting chloroplast NADP-binding protein. Chloroplast RNase P cleaves pre-tRNA by a reaction mechanism in which at least one of the Mg2+ ions utilized by the bacterial ribozyme RNase P is replaced by an amino acid side chain.


Asunto(s)
Evolución Biológica , Cloroplastos/metabolismo , Endorribonucleasas/metabolismo , Proteínas de Escherichia coli , Precursores del ARN/metabolismo , Procesamiento Postranscripcional del ARN , ARN Catalítico/metabolismo , ARN de Planta/metabolismo , ARN de Transferencia/biosíntesis , Animales , Endorribonucleasas/química , Endorribonucleasas/genética , Escherichia coli/enzimología , ARN Catalítico/química , ARN Catalítico/genética , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Ribonucleasa P , Ribonucleoproteínas/metabolismo , Tetrahymena/enzimología
9.
FEBS Lett ; 298(1): 69-73, 1992 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-1531962

RESUMEN

We established a bacterial system for high-level over-expression of the spinach chloroplast atpB gene which encodes the ATP synthase beta subunit. Upon induction, atpB was expressed as at least 50% to 70% of total cell protein. Although the over-expressed beta polypeptide formed insoluble inclusion bodies, more than fifty percent of it was restored to a functional form by solubilizing the inclusion bodies with 4 M urea and slowly removing the urea by stepwise dialysis. The resulting beta subunit exhibited specific and selective nucleotide binding properties identical to those of the native beta subunit.


Asunto(s)
Cloroplastos/enzimología , ATPasas de Translocación de Protón/genética , Proteínas Recombinantes/química , Secuencia de Bases , Clonación Molecular , Proteínas de Unión al ADN/química , Escherichia coli/genética , Regulación de la Expresión Génica , Vectores Genéticos , Datos de Secuencia Molecular , Plantas/enzimología , Unión Proteica , Conformación Proteica , ATPasas de Translocación de Protón/biosíntesis , ATPasas de Translocación de Protón/química , Proteínas Recombinantes/biosíntesis
10.
Mol Cell Biol ; 12(2): 865-75, 1992 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-1732750

RESUMEN

tRNAs in eukaryotic nuclei and organelles are synthesized as precursors lacking the 3'-terminal CCA sequence and possessing 5' (leader) and 3' (trailer) extensions. Nucleolytic cleavage of the 3' trailer and addition of CCA are therefore required for formation of functional tRNA 3' termini. Many chloroplast tRNA genes encode a C at position 74 which is not removed during processing but which can be incorporated as the first base of the CCAOH terminus. Sequences downstream of nucleotide 74, however, are always removed. Synthetic yeast pre-tRNA(Phe) substrates containing the complete CCA74-76 sequence were processed with crude or partially purified chloroplast enzyme fractions. The 3'-extended substrates (tRNA-CCA-trailer) were cleaved exclusively between nucleotides 74 and 75 to give tRNA-COH, whereas a 3'-mature transcript (tRNA-CCAOH) was not cleaved at all. A 5'-, 3'-extended chloroplast tRNA-CAG-trailer was also processed entirely to tRNA-COH. Furthermore, a 5'-mature, 3'-extended yeast pre-tRNA(Phe) derivative, tRNA-ACA-trailer, in which C74 was replaced by A, was cleaved precisely after A74. In contrast, we found that a partially purified enzyme fraction (a nuclear/cytoplasmic activity) from wheat embryo cleaved the 3'-extended yeast tRNA(Phe) precursors between nucleotides 73 and 74 to give tRNA(OH). This specificity is consistent with that of all previously characterized nuclear enzyme preparations. We conclude that (i) chloroplast tRNA 3'-processing endonuclease cleaves after nucleotide 74 regardless of the nature of the surrounding sequences; (ii) this specificity differs from that of the plant nuclear/cytoplasmic processing nuclease, which cleaves after base 73; and (iii) since 3'-mature tRNA is not a substrate for either activity, these 3' nucleases must require substrates possessing a 3'-terminal extension that extends past nucleotide 76. This substrate specificity may prevent mature tRNA from counterproductive cleavage by the 3' processing system.


Asunto(s)
Cloroplastos/enzimología , Endorribonucleasas/metabolismo , Precursores del ARN/metabolismo , ARN de Transferencia de Fenilalanina/metabolismo , Secuencia de Bases , Datos de Secuencia Molecular , Alineación de Secuencia , Especificidad por Sustrato , Triticum/enzimología
11.
Nucleic Acids Res ; 18(22): 6625-31, 1990 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-2123540

RESUMEN

Inhibition of an RNA processing reaction after treatment with the Ca2(+)-dependent micrococcal nuclease (MN) is often used as a criterion for the presence of a required RNA or ribonucleoprotein component in the system. Following MN digestion, the nuclease is inactivated with EGTA and radiolabeled substrate is added to assay for remaining RNA processing activity. We found previously that inhibition of RNA processing by MN need not involve RNA hydrolysis: EGTA-inactivated MN can suppress RNA processing if the assay is performed in the absence of carrier RNA. We now demonstrate both by native gel electrophoresis and by nitrocellulose filter retention that EGTA-inactivated MN forms a complex with free RNA which can be dissociated by addition of synthetic polynucleotides or heparin. In the absence of Ca2+, nuclease binds to precursor tRNA with an apparent KD congruent to 1.4 x 10(-6) M, comparable to its reported affinity for DNA. In an assay for endonucleolytic tRNA maturation, inactivated MN bound to radiolabeled pre-tRNA physically blocks the sites of endonuclease cleavage and prevents tRNA processing. We call this phenomenon 'substrate masking'. Addition of excess carrier RNA competes with pre-tRNA for MN binding and restores normal processing.


Asunto(s)
Ácido Egtácico/farmacología , Procesamiento Postranscripcional del ARN/efectos de los fármacos , ARN de Transferencia/metabolismo , Serina Endopeptidasas , Cloroplastos/efectos de los fármacos , Cloroplastos/metabolismo , Resistencia a Medicamentos , Endorribonucleasas/farmacología , Activación Enzimática/efectos de los fármacos , Hidrólisis , Cinética , Manganeso , Plantas , Ribonucleasa P , Especificidad por Sustrato/efectos de los fármacos
13.
EMBO J ; 7(6): 1567-74, 1988 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16453848

RESUMEN

Despite the prokaryotic origins of chloroplasts, a plant chloroplast tRNA precursor is processed in a homologous in vitro system by a pathway distinct from that observed in Escherichia coli, but identical to that utilized for maturation of nuclear pre-tRNAs. The mature tRNA 5' terminus is generated by the site-specific endonucleolytic cleavage of an RNase P (or P-type) activity. The 3' end is likewise produced by a single precise endonucleolytic cut at the 3' terminus of the encoded tRNA domain. This is the first complete structural characterization of an organellar tRNA processing system using a homologous substrate. In contrast to eubacterial RNase P, chloroplast RNase P does not appear to contain an RNA subunit. The chloroplast activity bands with bulk protein at 1.28 g/ml in CsCI density gradients, whereas E.coli RNase P bands as ribonucleoprotein at 1.73 g/ml. Chloroplast RNase P activity survives treatment with micrococcal nuclease (MN) at levels 10- to 100-fold higher than those required to totally inactivate the E.coli enzyme. The chloroplast system is sensitive to a suppression of tRNA processing, caused by binding of inactive MN to pre-tRNA substrate, which is readily overcome by addition of carrier RNA to the assay.

14.
Nucleic Acids Res ; 16(5): 1799-800, 1988 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-2451220

RESUMEN

Software has been developed to assist RNA fingerprinting analysis. One program generates, from a DNA sequence data file, the oligonucleotides resulting from digestion of an RNA transcript labeled with any specified nucleotide(s). Oligonucleotides are sorted according to their position on the fingerprint. Expected molar yields and products of secondary redigestion are also indicated. A second program facilitates calculation of experimental molar yields of oligonucleotides.


Asunto(s)
Computadores , Microcomputadores , Mapeo Nucleótido/métodos , ARN , Programas Informáticos/métodos , Secuencia de Bases , Conformación de Ácido Nucleico
15.
J Biol Chem ; 260(2): 1271-9, 1985 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-2981839

RESUMEN

A subcellular extract from Saccharomyces cerevisiae has been used to transcribe cloned yeast tRNA genes in vitro and to process the primary transcripts at the 5' and 3' termini. Chromatographic fractionation of the extract has separated the transcription components from two distinct nucleolytic activities: an endonuclease that cleaves the precursors to produce mature 5' termini; and a 3'-5' exonuclease. These fractions have been used to elaborate a processing pathway for the dimeric primary transcript of the yeast tRNAArg-tRNAAsp gene pair. Under optimal conditions in vitro this gene is expressed at a rate of 200 transcripts/gene/hour, initiating at position -10 with respect to the mature 5' terminus of tRNAArg and terminating near position +160. The primary transcripts are cleaved by an endonuclease to give tRNAAsp with a mature 5' terminus, and a pre-tRNAArg monomer with a 5' leader and 3' trailer sequences. A second endonuclease cleavage of pre-tRNAArg generates the mature 5' terminus of tRNAArg. The endonuclease cleavages are not ordered. Exonuclease activity(ies) remove the spacer sequences from the 5' mature tRNAArg, and trim the 3' trailer portion from tRNAAsp. Exonucleolytic removal of the 3' trailer does not require prior endonuclease action, but removal of the spacer sequences from pre-tRNAArg is incomplete without prior removal of the 5' leader sequences.


Asunto(s)
Precursores de Ácido Nucleico/genética , Saccharomyces cerevisiae/genética , Transcripción Genética , Núcleo Celular/metabolismo , Endonucleasas/metabolismo , Conformación de Ácido Nucleico , Aminoacil-ARN de Transferencia/biosíntesis , Ribonucleasa T1/metabolismo
16.
J Biol Chem ; 258(13): 8365-73, 1983 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-6863293

RESUMEN

Transfer RNA half-molecules are intermediates in the splicing of tRNA precursors containing intervening sequences. We have utilized yeast tRNA half-molecules to identify and partially purify an ATP-dependent RNA ligase activity from extracts of wheat germ. This activity can complement a yeast tRNA endonuclease in vitro to efficiently splice 10 different yeast tRNA precursors. The products of in vitro splicing are a covalently joined tRNA and a circular intervening sequence RNA. The internucleotide bond formed at the splice junction is a 2'-phosphomonoester, 3',5'-phosphodiester structure. The 2'-phosphate originates from the 2',3'-cyclic phosphate at the 3' terminus of the 5' half-tRNA. The phosphodiester phosphate is derived from the gamma-phosphate of ATP.


Asunto(s)
Plantas/enzimología , Polinucleótido Ligasas/metabolismo , ARN Ligasa (ATP)/metabolismo , ARN de Transferencia/metabolismo , Radioisótopos de Fósforo , Plantas/genética , ARN de Transferencia/genética , Ribonucleótidos/análisis , Triticum/enzimología , Triticum/genética
17.
J Biol Chem ; 258(13): 8374-83, 1983 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-6863294

RESUMEN

We have characterized the mechanism of action of a wheat germ RNA ligase which has been partially purified on the basis of its ability to participate in in vitro splicing of yeast tRNA precursors (Gegenheimer, P., Gabius, H-J., Peebles, C.L., and Abelson, J. (1983) J. Biol. Chem. 258, 8365-8373). The preparation catalyzes the ligation of oligoribonucleotide substrates forming a 2'-phosphomonoester, 3',5'-phosphodiester linkage. The 5' terminus of an RNA substrate can have either a 5'-hydroxyl or a 5'-phosphate. The 5'-phosphate, which for a 5'-hydroxyl substrate can be introduced by a polynucleotide kinase activity in the preparation, is incorporated into the ligated junction. The 3' terminus can have either a 2',3'-cyclic phosphate or a 2'-phosphate. 2',3'-Cyclic phosphates can be converted into 2'-phosphates by a 2',3'-cyclic phosphate, 3'-phosphodiesterase activity in the preparation. The 2'-phosphate of the ligated product is derived from the phosphate at the 3' terminus of the substrate. Ligation proceeds with the adenylylation of the 5'-phosphorylated terminus to form an intermediate with a 5',5'-phosphoanhydride bond.


Asunto(s)
Plantas/enzimología , Polinucleótido Ligasas/metabolismo , ARN Ligasa (ATP)/metabolismo , Cinética , Radioisótopos de Fósforo , Fosforilación , Especificidad por Sustrato , Triticum/enzimología
18.
Cell ; 32(2): 525-36, 1983 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-6186398

RESUMEN

Splicing of transfer RNA precursors containing intervening sequences proceeds in two distinct stages: endonucleolytic cleavage, followed by ligation. We have physically separated endonuclease and ligase activities from extracts of yeast cells, and we report properties of the partially purified endonuclease preparation. The endonuclease behaves as an integral membrane protein: it is purified from a membrane fraction from which it can be solubilized with nonionic detergents, and the activity of the endonuclease in the membrane fraction is stimulated by nonionic detergents. The endonuclease cleaves precursor tRNAs at two sites to excise the intervening sequence precisely. Both the extent and the accuracy of cleavage are enhanced by the presence of spermidine; the degree of stimulation varies with the pre-tRNA substrate. The cleavage products possess 5'-hydroxyl and 2',3'-cyclic phosphodiester termini. The cyclic phosphodiester termini can be opened to 2'-phosphates by a cyclic phosphodiesterase activity in the preparation.


Asunto(s)
Endorribonucleasas/metabolismo , Precursores de Ácido Nucleico/metabolismo , Empalme del ARN , ARN de Transferencia/metabolismo , ARN/metabolismo , Levaduras/enzimología , Secuencia de Bases , Endorribonucleasas/aislamiento & purificación , Membranas/enzimología , Oligorribonucleótidos/metabolismo , ARN Ligasa (ATP)/metabolismo , Precursores del ARN , Espermidina/farmacología
20.
Science ; 217(4565): 1147-9, 1982 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-17740972

RESUMEN

Linear, potato spindle tuber viroid RNA has been used as a substrate for an RNA ligase purified from wheat germ. Linear viroid molecules are efficiently converted to circular molecules (circles) which are indistinguishable by electrophoretic mobility and two-dimensional oligonucleotide pattern from viroid circles extracted from infected plants. In light of recent evidence for multimeric viroid replication intermediates, cleavage followed by RNA ligation by a cellular enzyme may (i) be a normal step in the viroid life cycle and (ii) may also reflect cellular events.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...