Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Cheminform ; 8: 57, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27803746

RESUMEN

BACKGROUND: The concept of partial atomic charges was first applied in physical and organic chemistry and was later also adopted in computational chemistry, bioinformatics and chemoinformatics. The electronegativity equalization method (EEM) is the most frequently used approach for calculating partial atomic charges. EEM is fast and its accuracy is comparable to the quantum mechanical charge calculation method for which it was parameterized. Several EEM parameter sets for various types of molecules and QM charge calculation approaches have been published and new ones are still needed and produced. Methodologies for EEM parameterization have been described in a few articles, but a software tool for EEM parameterization and EEM parameter sets validation has not been available until now. RESULTS: We provide the software tool NEEMP (http://ncbr.muni.cz/NEEMP), which offers three main functionalities: EEM parameterization [via linear regression (LR) and differential evolution with local minimization (DE-MIN)]; EEM parameter set validation (i.e., validation of coverage and quality) and EEM charge calculation. NEEMP functionality is shown using a parameterization and a validation case study. The parameterization case study demonstrated that LR is an appropriate approach for smaller and homogeneous datasets and DE-MIN is a suitable solution for larger and heterogeneous datasets. The validation case study showed that EEM parameter set coverage and quality can still be problematic. Therefore, it makes sense to verify the coverage and quality of EEM parameter sets before their use, and NEEMP is an appropriate tool for such verification. Moreover, it seems from both case studies that new EEM parameterizations need to be performed and new EEM parameter sets obtained with high quality and coverage for key structural databases. CONCLUSION: We provide the software tool NEEMP, which is to the best of our knowledge the only available software package that enables EEM parameterization and EEM parameter set validation. Additionally, its DE-MIN parameterization method is an innovative approach, developed by ourselves and first published in this work. In addition, we also prepared four high-quality EEM parameter sets tailored to ligand molecules.Graphical abstract.

2.
Molecules ; 21(10)2016 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-27763518

RESUMEN

The Eighth Central European Conference "Chemistry towards Biology" was held in Brno, Czech Republic, on August 28-September 1, 2016 to bring together experts in biology, chemistry and design of bioactive compounds; promote the exchange of scientific results, methods and ideas; and encourage cooperation between researchers from all over the world. The topics of the conference covered "Chemistry towards Biology", meaning that the event welcomed chemists working on biology-related problems, biologists using chemical methods, and students and other researchers of the respective areas that fall within the common scope of chemistry and biology. The authors of this manuscript are plenary speakers and other participants of the symposium and members of their research teams. The following summary highlights the major points/topics of the meeting.


Asunto(s)
Química Farmacéutica/métodos , Proteínas/química , Sistemas de Liberación de Medicamentos , Diseño de Fármacos , Epigénesis Genética , Relación Estructura-Actividad , Biología de Sistemas
3.
J Cheminform ; 7: 59, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26633997

RESUMEN

BACKGROUND: Partial atomic charges describe the distribution of electron density in a molecule and therefore provide clues to the chemical behaviour of molecules. Recently, these charges have become popular in chemoinformatics, as they are informative descriptors that can be utilised in pharmacophore design, virtual screening, similarity searches etc. Especially conformationally-dependent charges perform very successfully. In particular, their fast and accurate calculation via the Electronegativity Equalization Method (EEM) seems very promising for chemoinformatics applications. Unfortunately, published EEM parameter sets include only parameters for basic atom types and they often miss parameters for halogens, phosphorus, sulphur, triple bonded carbon etc. Therefore their applicability for drug-like molecules is limited. RESULTS: We have prepared six EEM parameter sets which enable the user to calculate EEM charges in a quality comparable to quantum mechanics (QM) charges based on the most common charge calculation schemes (i.e., MPA, NPA and AIM) and a robust QM approach (HF/6-311G, B3LYP/6-311G). The calculated EEM parameters exhibited very good quality on a training set ([Formula: see text]) and also on a test set ([Formula: see text]). They are applicable for at least 95 % of molecules in key drug databases (DrugBank, ChEMBL, Pubchem and ZINC) compared to less than 60 % of the molecules from these databases for which currently used EEM parameters are applicable. CONCLUSIONS: We developed EEM parameters enabling the fast calculation of high-quality partial atomic charges for almost all drug-like molecules. In parallel, we provide a software solution for their easy computation (http://ncbr.muni.cz/eem_parameters). It enables the direct application of EEM in chemoinformatics.

4.
J Cheminform ; 7: 50, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26500704

RESUMEN

BACKGROUND: Partial atomic charges are a well-established concept, useful in understanding and modeling the chemical behavior of molecules, from simple compounds, to large biomolecular complexes with many reactive sites. RESULTS: This paper introduces AtomicChargeCalculator (ACC), a web-based application for the calculation and analysis of atomic charges which respond to changes in molecular conformation and chemical environment. ACC relies on an empirical method to rapidly compute atomic charges with accuracy comparable to quantum mechanical approaches. Due to its efficient implementation, ACC can handle any type of molecular system, regardless of size and chemical complexity, from drug-like molecules to biomacromolecular complexes with hundreds of thousands of atoms. ACC writes out atomic charges into common molecular structure files, and offers interactive facilities for statistical analysis and comparison of the results, in both tabular and graphical form. CONCLUSIONS: Due to high customizability and speed, easy streamlining and the unified platform for calculation and analysis, ACC caters to all fields of life sciences, from drug design to nanocarriers. ACC is freely available via the Internet at http://ncbr.muni.cz/ACC.

5.
J Chem Inf Model ; 55(6): 1088-97, 2015 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-26010215

RESUMEN

The acid dissociation constant is an important molecular property, and it can be successfully predicted by Quantitative Structure-Property Relationship (QSPR) models, even for in silico designed molecules. We analyzed how the methodology of in silico 3D structure preparation influences the quality of QSPR models. Specifically, we evaluated and compared QSPR models based on six different 3D structure sources (DTP NCI, Pubchem, Balloon, Frog2, OpenBabel, and RDKit) combined with four different types of optimization. These analyses were performed for three classes of molecules (phenols, carboxylic acids, anilines), and the QSPR model descriptors were quantum mechanical (QM) and empirical partial atomic charges. Specifically, we developed 516 QSPR models and afterward systematically analyzed the influence of the 3D structure source and other factors on their quality. Our results confirmed that QSPR models based on partial atomic charges are able to predict pKa with high accuracy. We also confirmed that ab initio and semiempirical QM charges provide very accurate QSPR models and using empirical charges based on electronegativity equalization is also acceptable, as well as advantageous, because their calculation is very fast. On the other hand, Gasteiger-Marsili empirical charges are not applicable for pKa prediction. We later found that QSPR models for some classes of molecules (carboxylic acids) are less accurate. In this context, we compared the influence of different 3D structure sources. We found that an appropriate selection of 3D structure source and optimization method is essential for the successful QSPR modeling of pKa. Specifically, the 3D structures from the DTP NCI and Pubchem databases performed the best, as they provided very accurate QSPR models for all the tested molecular classes and charge calculation approaches, and they do not require optimization. Also, Frog2 performed very well. Other 3D structure sources can also be used but are not so robust, and an unfortunate combination of molecular class and charge calculation approach can produce weak QSPR models. Additionally, these 3D structures generally need optimization in order to produce good quality QSPR models.


Asunto(s)
Fenómenos Químicos , Modelos Moleculares , Conformación Molecular , Relación Estructura-Actividad Cuantitativa , Simulación por Computador , Diseño de Fármacos , Teoría Cuántica
6.
Nucleic Acids Res ; 43(Database issue): D369-75, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25392418

RESUMEN

Following the discovery of serious errors in the structure of biomacromolecules, structure validation has become a key topic of research, especially for ligands and non-standard residues. ValidatorDB (freely available at http://ncbr.muni.cz/ValidatorDB) offers a new step in this direction, in the form of a database of validation results for all ligands and non-standard residues from the Protein Data Bank (all molecules with seven or more heavy atoms). Model molecules from the wwPDB Chemical Component Dictionary are used as reference during validation. ValidatorDB covers the main aspects of validation of annotation, and additionally introduces several useful validation analyses. The most significant is the classification of chirality errors, allowing the user to distinguish between serious issues and minor inconsistencies. Other such analyses are able to report, for example, completely erroneous ligands, alternate conformations or complete identity with the model molecules. All results are systematically classified into categories, and statistical evaluations are performed. In addition to detailed validation reports for each molecule, ValidatorDB provides summaries of the validation results for the entire PDB, for sets of molecules sharing the same annotation (three-letter code) or the same PDB entry, and for user-defined selections of annotations or PDB entries.


Asunto(s)
Bases de Datos de Proteínas , Proteínas/química , Aminoácidos/química , Internet , Ligandos , Modelos Moleculares , Anotación de Secuencia Molecular , Conformación Proteica , Reproducibilidad de los Resultados
7.
Nucleic Acids Res ; 42(Web Server issue): W227-33, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24848013

RESUMEN

Structure validation has become a major issue in the structural biology community, and an essential step is checking the ligand structure. This paper introduces MotiveValidator, a web-based application for the validation of ligands and residues in PDB or PDBx/mmCIF format files provided by the user. Specifically, MotiveValidator is able to evaluate in a straightforward manner whether the ligand or residue being studied has a correct annotation (3-letter code), i.e. if it has the same topology and stereochemistry as the model ligand or residue with this annotation. If not, MotiveValidator explicitly describes the differences. MotiveValidator offers a user-friendly, interactive and platform-independent environment for validating structures obtained by any type of experiment. The results of the validation are presented in both tabular and graphical form, facilitating their interpretation. MotiveValidator can process thousands of ligands or residues in a single validation run that takes no more than a few minutes. MotiveValidator can be used for testing single structures, or the analysis of large sets of ligands or fragments prepared for binding site analysis, docking or virtual screening. MotiveValidator is freely available via the Internet at http://ncbr.muni.cz/MotiveValidator.


Asunto(s)
Sustancias Macromoleculares/química , Programas Informáticos , Acetilglucosamina/química , Sitios de Unión , Ácido Cólico/química , Efrina-B3/química , Glicoproteínas/química , Internet , Ligandos , Proteínas/química
8.
J Chem Inf Model ; 53(10): 2548-58, 2013 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-23968236

RESUMEN

We focused on the parametrization and evaluation of empirical models for fast and accurate calculation of conformationally dependent atomic charges in proteins. The models were based on the electronegativity equalization method (EEM), and the parametrization procedure was tailored to proteins. We used large protein fragments as reference structures and fitted the EEM model parameters using atomic charges computed by three population analyses (Mulliken, Natural, iterative Hirshfeld), at the Hartree-Fock level with two basis sets (6-31G*, 6-31G**) and in two environments (gas phase, implicit solvation). We parametrized and successfully validated 24 EEM models. When tested on insulin and ubiquitin, all models reproduced quantum mechanics level charges well and were consistent with respect to population analysis and basis set. Specifically, the models showed on average a correlation of 0.961, RMSD 0.097 e, and average absolute error per atom 0.072 e. The EEM models can be used with the freely available EEM implementation EEM_SOLVER.


Asunto(s)
Insulina/química , Modelos Químicos , Fragmentos de Péptidos/química , Programas Informáticos , Ubiquitina/química , Simulación por Computador , Bases de Datos de Proteínas , Gases , Humanos , Conformación Proteica , Teoría Cuántica , Sensibilidad y Especificidad , Soluciones , Electricidad Estática , Factores de Tiempo
9.
J Cheminform ; 5(1): 18, 2013 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-23574978

RESUMEN

: The acid dissociation constant p Ka is a very important molecular property, and there is a strong interest in the development of reliable and fast methods for p Ka prediction. We have evaluated the p Ka prediction capabilities of QSPR models based on empirical atomic charges calculated by the Electronegativity Equalization Method (EEM). Specifically, we collected 18 EEM parameter sets created for 8 different quantum mechanical (QM) charge calculation schemes. Afterwards, we prepared a training set of 74 substituted phenols. Additionally, for each molecule we generated its dissociated form by removing the phenolic hydrogen. For all the molecules in the training set, we then calculated EEM charges using the 18 parameter sets, and the QM charges using the 8 above mentioned charge calculation schemes. For each type of QM and EEM charges, we created one QSPR model employing charges from the non-dissociated molecules (three descriptor QSPR models), and one QSPR model based on charges from both dissociated and non-dissociated molecules (QSPR models with five descriptors). Afterwards, we calculated the quality criteria and evaluated all the QSPR models obtained. We found that QSPR models employing the EEM charges proved as a good approach for the prediction of p Ka (63% of these models had R2 > 0.9, while the best had R2 = 0.924). As expected, QM QSPR models provided more accurate p Ka predictions than the EEM QSPR models but the differences were not significant. Furthermore, a big advantage of the EEM QSPR models is that their descriptors (i.e., EEM atomic charges) can be calculated markedly faster than the QM charge descriptors. Moreover, we found that the EEM QSPR models are not so strongly influenced by the selection of the charge calculation approach as the QM QSPR models. The robustness of the EEM QSPR models was subsequently confirmed by cross-validation. The applicability of EEM QSPR models for other chemical classes was illustrated by a case study focused on carboxylic acids. In summary, EEM QSPR models constitute a fast and accurate p Ka prediction approach that can be used in virtual screening.

10.
J Chem Inf Model ; 52(2): 343-59, 2012 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-22296449

RESUMEN

There is a paramount need to develop new techniques and tools that will extract as much information as possible from the ever growing repository of protein 3D structures. We report here on the development of a software tool for the multiple superimposition of large sets of protein structural motifs. Our superimposition methodology performs a systematic search for the atom pairing that provides the best fit. During this search, the RMSD values for all chemically relevant pairings are calculated by quaternion algebra. The number of evaluated pairings is markedly decreased by using PDB annotations for atoms. This approach guarantees that the best fit will be found and can be applied even when sequence similarity is low or does not exist at all. We have implemented this methodology in the Web application SiteBinder, which is able to process up to thousands of protein structural motifs in a very short time, and which provides an intuitive and user-friendly interface. Our benchmarking analysis has shown the robustness, efficiency, and versatility of our methodology and its implementation by the successful superimposition of 1000 experimentally determined structures for each of 32 eukaryotic linear motifs. We also demonstrate the applicability of SiteBinder using three case studies. We first compared the structures of 61 PA-IIL sugar binding sites containing nine different sugars, and we found that the sugar binding sites of PA-IIL and its mutants have a conserved structure despite their binding different sugars. We then superimposed over 300 zinc finger central motifs and revealed that the molecular structure in the vicinity of the Zn atom is highly conserved. Finally, we superimposed 12 BH3 domains from pro-apoptotic proteins. Our findings come to support the hypothesis that there is a structural basis for the functional segregation of BH3-only proteins into activators and enablers.


Asunto(s)
Secuencias de Aminoácidos , Bases de Datos de Proteínas , Programas Informáticos , Sitios de Unión , Eucariontes , Relación Estructura-Actividad
11.
J Chem Inf Model ; 51(8): 1795-806, 2011 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-21761919

RESUMEN

The acid dissociation (ionization) constant pK(a) is one of the fundamental properties of organic molecules. We have evaluated different computational strategies and models to predict the pK(a) values of substituted phenols using partial atomic charges. Partial atomic charges for 124 phenol molecules were calculated using 83 approaches containing seven theory levels (MP2, HF, B3LYP, BLYP, BP86, AM1, and PM3), three basis sets (6-31G*, 6-311G, STO-3G), and five population analyses (MPA, NPA, Hirshfeld, MK, and Löwdin). The correlations between pK(a) and various atomic charge descriptors were examined, and the best descriptors were selected for preparing the quantitative structure-property relationship (QSPR) models. One QSPR model was created for each of the 83 approaches to charge calculation, and then the accuracy of all these models was analyzed and compared. The pK(a)s predicted by most of the models correlate strongly with experimental pK(a) values. For example, more than 25% of the models have correlation coefficients (R²) greater than 0.95 and root-mean-square errors smaller than 0.49. All seven examined theory levels are applicable for pK(a) prediction from charges. The best results were obtained for the MP2 and HF level of theory. The most suitable basis set was found to be 6-31G*. The 6-311G basis set provided slightly weaker correlations, and unexpectedly also, the STO-3G basis set is applicable for the QSPR modeling of pK(a). The Mulliken, natural, and Löwdin population analyses provide accurate models for all tested theory levels and basis sets. The results provided by the Hirshfeld population analysis were also acceptable, but the QSPR models based on MK charges show only weak correlations.


Asunto(s)
Química Farmacéutica/métodos , Preparaciones Farmacéuticas/análisis , Fenoles/análisis , Química Farmacéutica/estadística & datos numéricos , Simulación por Computador , Cinética , Modelos Químicos , Modelos Estadísticos , Conformación Molecular , Preparaciones Farmacéuticas/química , Fenoles/química , Relación Estructura-Actividad Cuantitativa , Teoría Cuántica , Electricidad Estática
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA