Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Mech Behav Biomed Mater ; 158: 106644, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39088941

RESUMEN

Ceramic lattices hold great potential for bone scaffolds to facilitate bone regeneration and integration of native tissue with medical implants. While there have been several studies on additive manufacturing of ceramics and their osseointegrative and osteoconductive properties, there is a lack of a comprehensive examination of their mechanical behavior. Therefore, the aim of this study was to assess the mechanical properties of different additively manufactured ceramic lattice structures under different loading conditions and their overall ability to mimic bone tissue properties. Eleven different lattice structures were designed and manufactured with a porosity of 80% using two materials, hydroxyapatite (HAp) and zirconium dioxide (ZrO2). Six cell-based lattices with cubic and hexagonal base, as well as five Voronoi-based lattices were considered in this study. The samples were manufactured using lithography-based ceramic additive manufacturing and post-processed thermally prior to mechanical testing. Cell-based lattices with cubic and hexagonal base, as well as Voronoi-based lattices were considered in this study. The lattices were tested under four loading conditions: compression, four-point bending, shear and tension. The manufacturing process of the different ceramics leads to different deviations of the lattice geometry, hence, the elastic properties of one structure cannot be directly inferred from one material to another. ZrO2 lattices prove to be stiffer than HAp lattices of the same designed structure. The Young's modulus for compression of ZrO2 lattices ranges from 2 to 30GPa depending on the used lattice design and for HAp 200MPa to 3.8GPa. The expected stability, the load where 63.2% of the samples are expected to be destroyed, of the lattices ranges from 81 to 553MPa and for HAp 6 to 42MPa. For the first time, a comprehensive overview of the mechanical properties of various additively manufactured ceramic lattice structures is provided. This is intended to serve as a reference for designers who would like to expand the design capabilities of ceramic implants that will lead to an advancement in their performance and ability to mimic human bone tissue.


Asunto(s)
Cerámica , Durapatita , Ensayo de Materiales , Fenómenos Mecánicos , Circonio , Circonio/química , Cerámica/química , Durapatita/química , Pruebas Mecánicas , Porosidad
2.
Phys Rev Lett ; 132(23): 230401, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38905661

RESUMEN

The combination of optical tweezer arrays with strong interactions-via dipole exchange of molecules and Van der Waals interactions of Rydberg atoms-has opened the door for the exploration of a wide variety of quantum spin models. A next significant step will be the combination of such settings with mobile dopants. This will enable one to simulate the physics believed to underlie many strongly correlated quantum materials. Here, we propose an experimental scheme to realize bosonic t-J models via encoding the local Hilbert space in a set of three internal atomic or molecular states. By engineering antiferromagnetic (AFM) couplings between spins, competition between charge motion and magnetic order similar to that in high-T_{c} cuprates can be realized. Since the ground states of the 2D bosonic AFM t-J model we propose to realize have not been studied extensively before, we start by analyzing the case of two dopants-the simplest instance in which their bosonic statistics plays a role-and compare our results to the fermionic case. We perform large-scale density matrix renormalization group calculations on six-legged cylinders, and find a strong tendency for bosonic holes to form stripes. This demonstrates that bosonic, AFM t-J models may contain similar physics as the collective phases in strongly correlated electrons.

3.
Sensors (Basel) ; 22(18)2022 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-36146280

RESUMEN

Today, aircraft composite structures are generally over-dimensioned to avoid catastrophic failure by unseen damages. This leads to a higher system weight and therefore an unwanted increase in greenhouse gas emissions. To reduce this parasitic mass, load monitoring can play an important role in damage detection. Additionally, the weight and volume of future aircraft structures can also be reduced by energy storing and load carrying structures: so-called power composites. In this study a novel method of combining both approaches for maximum weight reduction is shown. This is achieved by using power composites as load monitoring sensors and energy suppliers. Therefore, supercapacitors are integrated into fiber reinforced polymers and are then used to investigate the mechanical load influence. By using four-point bending experiments and in situ electrochemical impedance spectroscopy, a strong relation between the mechanical load and the electrochemical system is found and analyzed using a model. For the first time, it is possible to detect small strain values down to 0.2% with a power composite. This strain is considerably lower than the conventional system load. The developed model and the impedance data indicate the possibility of using the composite as an energy storage as well as a strain sensor.

4.
Science ; 374(6571): 1149-1152, 2021 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-34822286

RESUMEN

Controlling interactions is the key element for the quantum engineering of many-body systems. Using time-periodic driving, a naturally given many-body Hamiltonian of a closed quantum system can be transformed into an effective target Hamiltonian that exhibits vastly different dynamics. We demonstrate such Floquet engineering with a system of spins represented by Rydberg states in an ultracold atomic gas. By applying a sequence of spin manipulations, we change the symmetry properties of the effective Heisenberg XYZ Hamiltonian. As a consequence, the relaxation behavior of the total spin is drastically modified. The observed dynamics can be qualitatively captured by a semiclassical simulation. Engineering a wide range of Hamiltonians opens vast opportunities for implementing quantum simulation of nonequilibrium dynamics in a single experimental setting.

5.
Nanoscale ; 11(4): 2048-2055, 2019 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-30644939

RESUMEN

Fabrication of porous, foam-like germanium-based (Ge-based) nanostructures is achieved with the use of the amphiphilic diblock copolymer polystyrene-b-polyethylene oxide as structure directing agent. Basic concepts of block copolymer assisted sol-gel synthesis are successfully realized based on the [Ge9]4- Zintl clusters as a precursor for Ge-based thin films. Material/elemental composition and crystalline Ge-based phases are investigated via X-ray photoelectron spectroscopy and X-ray diffraction measurements, respectively. Poor-good solvent pair induced phase separation leads to pore sizes in the Ge-based films up to 40 nm, which can be tuned through a change of the molar mixing ratio between polymer template and precursor as proven by grazing incidence small angle X-ray scattering and scanning electron microscopy.

6.
Angew Chem Int Ed Engl ; 57(39): 12950-12955, 2018 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-30009505

RESUMEN

Polyanionic silicon clusters are provided by the Zintl phases K4 Si4 , comprising [Si4 ]4- units, and K12 Si17 , consisting of [Si4 ]4- and [Si9 ]4- clusters. A combination of solid-state MAS-NMR, solution NMR, and Raman spectroscopy, electrospray ionization mass spectrometry, and quantum-chemical investigations was used to investigate four- and nine-atomic silicon Zintl clusters in neat solids and solution. The results were compared to 29 Si isotope-enriched samples. 29 Si-MAS NMR and Raman shifts of the phase-pure solids K4 Si4 and K12 Si17 were interpreted by quantum-chemical calculations. Extraction of [Si9 ]4- clusters from K12 Si17 with liquid ammonia/222crypt and their transfer to pyridine yields in a red solid containing Si9 clusters. This compound was characterized by elemental and EDX analyses and 29 Si-MAS NMR and Raman spectroscopy. Charged Si9 clusters were detected by 29 Si NMR in solution. 29 Si and 1 H NMR spectra reveal the presence of the [H2 Si9 ]2- cluster anion in solution.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA