Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant Physiol ; 127(2): 685-700, 2001 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-11598242

RESUMEN

The compartmentation of metabolism in heterotrophic plant tissues is poorly understood due to the lack of data on metabolite distributions and fluxes between subcellular organelles. The main reason for this is the lack of suitable experimental methods with which intracellular metabolism can be measured. Here, we describe a nonaqueous fractionation method that allows the subcellular distributions of metabolites in developing potato (Solanum tuberosum L. cv Desiree) tubers to be calculated. In addition, we have coupled this fractionation method to a recently described gas chromatography-mass spectrometry procedure that allows the measurement of a wide range of small metabolites. To calculate the subcellular metabolite concentrations, we have analyzed organelle volumes in growing potato tubers using electron microscopy. The relative volume distributions in tubers are very similar to the ones for source leaves. More than 60% of most sugars, sugar alcohols, organic acids, and amino acids were found in the vacuole, although the concentrations of these metabolites is often higher in the cytosol. Significant amounts of the substrates for starch biosynthesis, hexose phosphates, and ATP were found in the plastid. However, pyrophosphate was located almost exclusively in the cytosol. Calculation of the mass action ratios of sucrose synthase, UDP-glucose pyrophosphorylase, phosphoglucosisomerase, and phosphoglucomutase indicate that these enzymes are close to equilibrium in developing potato tubers. However, due to the low plastidic pyrophosphate concentration, the reaction catalyzed by ADP-glucose pyrophosphorylase was estimated to be far removed from equilibrium.


Asunto(s)
Hexosafosfatos/metabolismo , Nucleótidos/metabolismo , Pirofosfatasas/metabolismo , Solanum tuberosum/metabolismo , Aminoácidos/metabolismo , Metabolismo de los Hidratos de Carbono , Ácidos Carboxílicos/metabolismo , Compartimento Celular , Fraccionamiento Celular , Citosol/metabolismo , Citosol/ultraestructura , Cromatografía de Gases y Espectrometría de Masas , Fosforilación , Plastidios/metabolismo , Plastidios/ultraestructura , Solanum tuberosum/crecimiento & desarrollo , Alcoholes del Azúcar/metabolismo , Vacuolas/metabolismo , Vacuolas/ultraestructura
2.
Planta ; 212(5-6): 782-91, 2001 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-11346952

RESUMEN

To investigate the importance of the overall size of the total adenine nucleotide pool for the regulation of primary metabolism in growing potato tubers, freshly cut discs were provided with zero or 2 mM adenine in the presence of 1 or 100 mM [U-14C]glucose or 100 mM [U-14C]sucrose in the presence and absence of 20 mM orthophosphate (Pi). Adenine led to a 150-250% increase of the total adenine nucleotide pool, which included an increase of ADP, a larger increase of ATP and an increase of the ATP:ADP ratio. There was a 50-100% increase of ADP-glucose (ADPGlc), and starch synthesis was stimulated. Respiratory oxygen uptake was stimulated, and the levels of glycerate-3-phosphate, phosphoenolpyruvate and alpha-ketoglutarate decreased. The response to adenine was not modified by Pi. It is proposed that increased ATP stimulates ADPGlc pyrophosphorylase, leading to a higher rate of starch synthesis. The impact on starch synthesis is constrained, however, because increased ADP can lead to a stimulation of respiration and decline of glycerate-3-phosphate, which will inhibit ADPGlc pyrophosphorylase. The quantitative impact depends on the conditions. In the presence of 1 mM glucose, the levels of phosphorylated intermediates and the rate of starch synthesis were low. Adenine led to a relatively large stimulation of respiration, but only a small stimulation of starch synthesis. In the presence of 100 mM glucose, discs contained high levels of phosphorylated intermediates, low ATP:ADP ratios (< 3) and low rates of starch synthesis (< 20% of the metabolised glucose). Adenine led to marked increase of ATP and 2- to 4-fold stimulation of starch synthesis. Discs incubated with 100 mM sucrose already had high ATP:ADP ratios (> 8) and high rates of starch synthesis (> 50% of the metabolised sucrose). Adenine led to a further increase, but the stimulation was less marked than in high glucose. These results have implications for the function of nucleotide cofactors in segregating sucrose mobilisation and respiration, and the need for energy conservation during sugar-starch conversions.


Asunto(s)
Nucleótidos de Adenina/metabolismo , Adenina/metabolismo , Solanum tuberosum/metabolismo , Almidón/biosíntesis , Adenosina Difosfato Glucosa/biosíntesis , Adenosina Trifosfato/metabolismo , Radioisótopos de Carbono , Respiración de la Célula/efectos de los fármacos , Glucosa/metabolismo , Glucosa-1-Fosfato Adenililtransferasa , Glucólisis/efectos de los fármacos , Nucleotidiltransferasas/metabolismo , Oxígeno/metabolismo , Fosfatos/farmacología , Estructuras de las Plantas/efectos de los fármacos , Estructuras de las Plantas/metabolismo , Solanum tuberosum/efectos de los fármacos , Sacarosa/metabolismo
3.
Plant Physiol ; 125(4): 1667-78, 2001 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-11299348

RESUMEN

We showed recently that antisense plants with decreased activity of the plastidic ATP/ADP-transporter protein exhibit drastically reduced levels of starch and a decreased amylose/amylopectin ratio, whereas sense plants with increased activity of the transporter possessed more starch than wild-type plants and an increased amylose/amylopectin ratio. In this paper we investigate the effect of altered plastidic ATP/ADP-transporter protein expression on primary metabolism and granule morphology in more detail. Tuber tissues from antisense and sense plants exhibited substantially increased respiratory activity compared with the wild type. Tubers from antisense plants contained markedly increased levels of free sugars, UDP-Glc, and hexose phosphates, whereas phosphoenolpyruvate, isocitrate, ATP, ADP, AMP, UTP, UDP, and inorganic pyrophosphate levels were slightly decreased. In contrast, tubers from sense plants revealed a slight increase in adenine and uridine nucleotides and in the levels of inorganic pyrophosphate, whereas no significant changes in the levels of soluble sugars and metabolites were observed. Antisense tubers contained 50% reduced levels of ADP-Glc, whereas sense tubers contained up to 2-fold increased levels of this sole precursor for starch biosynthesis. Microscopic examination of starch grain morphology revealed that the size of starch grains from antisense tubers was substantially smaller (50%) compared with the wild type. The large starch grains from sense tubers appeared of a more angular morphology, which differed to the more ellipsoid shape of wild type grains. The results suggest a close interaction between plastidial adenylate transport and starch biosynthesis, indicating that ADP-Glc pyrophosphorylase is ATP-limited in vivo and that changes in ADP-Glc concentration determine starch yield, as well as granule morphology. Possible factors linking starch synthesis and respiration are discussed.


Asunto(s)
Adenosina Difosfato/metabolismo , Adenosina Trifosfato/metabolismo , Proteínas Portadoras/metabolismo , Proteínas de Plantas/metabolismo , Raíces de Plantas/fisiología , Plantas Modificadas Genéticamente/fisiología , Plastidios/metabolismo , Solanum tuberosum/fisiología , Almidón/metabolismo , Almidón/ultraestructura , Nucleótidos de Adenina/metabolismo , Proteínas Portadoras/genética , Difosfatos/metabolismo , Glucólisis , Consumo de Oxígeno , Proteínas de Plantas/genética , Solanum tuberosum/genética , Nucleótidos de Uracilo/metabolismo , Uridina Difosfato Glucosa/metabolismo
4.
Plant Physiol ; 125(4): 1967-77, 2001 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-11299376

RESUMEN

In the present paper we investigated the effect of the sucrose (Suc) analog palatinose on potato (Solanum tuberosum) tuber metabolism. In freshly cut discs of growing potato tubers, addition of 5 mM palatinose altered the metabolism of exogenously supplied [U-14C]Suc. There was slight inhibition of the rate of 14C-Suc uptake, a 1.5-fold increase in the rate at which 14C-Suc was subsequently metabolized, and a shift in the allocation of the metabolized label in favor of starch synthesis. The sum result of these changes was a 2-fold increase in the absolute rate of starch synthesis. The increased rate of starch synthesis was accompanied by a 3-fold increase in inorganic pyrophosphate, a 2-fold increase in UDP, decreased UTP/UDP, ATP/ADP, and ATP/AMP ratios, and decreased adenylate energy charge, whereas glycolytic and Krebs cycle intermediates were unchanged. In addition, feeding palatinose to potato discs also stimulated the metabolism of exogenous 14C-glucose in favor of starch synthesis. In vitro studies revealed that palatinose is not metabolized by Suc synthases or invertases within potato tuber extracts. Enzyme kinetics revealed different effects of palatinose on Suc synthase and invertase activities, implicating palatinose as an allosteric effector leading to an inhibition of Suc synthase and (surprisingly) to an activation of invertase in vitro. However, measurement of tissue palatinose levels revealed that these were too low to have significant effects on Suc degrading activities in vivo. These results suggest that supplying palatinose to potato tubers represents a novel way to increase starch synthesis.


Asunto(s)
Isomaltosa/farmacología , Raíces de Plantas/metabolismo , Solanum tuberosum/metabolismo , Almidón/biosíntesis , Sacarosa/metabolismo , Regulación Alostérica , Radioisótopos de Carbono , Glucosa/metabolismo , Glucólisis , Glicósido Hidrolasas/metabolismo , Isomaltosa/análogos & derivados , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo , Solanum tuberosum/efectos de los fármacos , Solanum tuberosum/crecimiento & desarrollo , beta-Fructofuranosidasa
5.
Biol Chem ; 381(8): 723-40, 2000 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-11030430

RESUMEN

Plants lack specialised organs and circulatory systems, and oxygen can fall to low concentrations in metabolically active, dense or bulky tissues. In animals that tolerate hypoxia or anoxia, low oxygen triggers an adaptive inhibition of respiration and metabolic activity. Growing potato tubers were used to investigate whether an analogous response exists in plants. Oxygen concentrations fall below 5% in the centre of growing potato tubers. This is accompanied by a decrease of the adenylate energy status, and alterations of metabolites that are indicative of a decreased rate of glycolysis. The response to low oxygen was investigated in more detail by incubating tissue discs from growing tubers for 2 hours at a range of oxygen concentrations. When oxygen was decreased in the range between 21% and 4% there was a partial inhibition of sucrose breakdown, glycolysis and respiration. The energy status of the adenine, guanine and uridine nucleotides decreased, but pyrophosphate levels remained high. The inhibition of sucrose breakdown and glycolysis was accompanied by a small increase of sucrose, fructose, glycerate-3-phosphate, phosphenolpyruvate, and pyruvate, a decrease of the acetyl-coenzymeA:coenzymeA ratio, and a small increase of isocitrate and 2-oxoglutarate. These results indicate that carbon fluxes are inhibited at several sites, but the primary site of action of low oxygen is probably in mitochondrial electron transport. Decreasing the oxygen concentration from 21% to 4% also resulted in a partial inhibition of sucrose uptake, a strong inhibition of amino acid synthesis, a decrease of the levels of cofactors including the adenine, guanine and uridine nucleotides and coenzymeA, and attenuated the wounding-induced increase of respiration and invertase and phenylalanine lyase activity in tissue discs. Starch synthesis was maintained at high rates in low oxygen. Anoxia led to a diametrically opposed response, in which glycolysis rose 2-fold to support fermentation, starch synthesis was strongly inhibited, and the level of lactate and the lactate:pyruvate ratio and the triose-phosphate:glycerate-3-phosphate ratio increased dramatically. It is concluded that low oxygen triggers (i) a partial inhibition of respiration leading to a decrease of the cellular energy status and (ii) a parallel inhibition of a wide range of energy-consuming metabolic processes. These results have general implications for understanding the regulation of glycolysis, starch synthesis and other biosynthetic pathways in plants, and reveal a potential role for pyrophosphate in conserving energy and decreasing oxygen consumption.


Asunto(s)
Metabolismo Energético/efectos de los fármacos , Oxígeno/metabolismo , Oxígeno/farmacología , Solanum tuberosum/metabolismo , Nucleótidos de Adenina/metabolismo , Respiración de la Célula/efectos de los fármacos , Glucólisis/efectos de los fármacos , Microelectrodos , Raíces de Plantas/metabolismo , Almidón/metabolismo , Sacarosa/metabolismo , Heridas y Lesiones/metabolismo
6.
Plant J ; 23(6): 795-806, 2000 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-10998190

RESUMEN

Sucrose export from leaves is high during the day and lower at night, when it depends on starch remobilisation. We have investigated the consequences of diurnal changes of photoassimilate supply for starch synthesis and other metabolic processes in growing potato tubers. Sucrose, the levels of the transcripts for SUS and AGPS, the levels of key metabolites, and the rate of synthesis of starch and other major end products, including protein and cell wall polysaccharides, increased twofold or more between the start and end of the light period. The stimulation of starch synthesis was accompanied by an increase of UDPglucose and ADPglucose, whereas glycolytic intermediates remained unaltered, revealing that sucrose synthase and ADP-glucose pyrophosphorylase are being co-ordinately regulated. Sucrose synthase is stimulated via an increase of its substrates, UDP and sucrose. UDP increases due to an increase of the overall uridine nucleotide pool, and a decrease of the UTP/UDP ratio that occurs in parallel with a decrease of the ATP/ADP ratio and adenylate energy charge when biosynthetic fluxes are high at the end of the day. Within the time frame of the diurnal changes, the changes in the SUS and AGPS transcript levels do not lead to significant changes in the encoded enzymes. Transformants with a progressive decrease of sucrose phosphate synthase expression, where diurnal changes in leaf sugar levels were damped, exhibited a progressive attenuation of the diurnal changes of sucrose, nucleotide sugars and nucleotides, and fluxes in their tubers. It is concluded that metabolic processes in tubers are tightly linked to the momentary supply of sucrose.


Asunto(s)
Ritmo Circadiano , Glucosiltransferasas/metabolismo , Nucleótidos/metabolismo , ARN Mensajero/metabolismo , Solanum tuberosum/metabolismo , Almidón/biosíntesis , Sacarosa/metabolismo , ARN Mensajero/genética , Solanum tuberosum/enzimología , Solanum tuberosum/genética
7.
Plant Physiol ; 123(2): 681-8, 2000 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-10859198

RESUMEN

The early stages of tuber development are characterized by cell division, high metabolic activity, and the predominance of invertase as the sucrose (Suc) cleaving activity. However, during the subsequent phase of starch accumulation the cleavage of Suc occurs primarily by the action of Suc synthase. The mechanism that is responsible for this switch in Suc cleaving activities is currently unknown. One striking difference between the invertase and Suc synthase mediated cleavage of Suc is the direct involvement of inorganic pyrophosphate (PPi) in the latter case. There is presently no convincing explanation of how the PPi required to support this process is generated in potato (Solanum tuberosum) tubers. The major site of PPi production in a maturing potato tubers is likely to be the reaction catalyzed by ADP-glucose pyrophosphorylase, the first committed step of starch biosynthesis in amyloplasts. We present data based on the analysis of the PPi levels in various transgenic plants altered in starch and Suc metabolism that support the hypothesis that PPi produced in the plastid is used to support cytosolic Suc breakdown and that PPi is an important coordinator of cytosolic and plastidial metabolism in potato tubers.


Asunto(s)
Carbono/metabolismo , Citosol/metabolismo , Difosfatos/metabolismo , Plastidios/metabolismo , Solanum tuberosum/metabolismo , Adenosina Difosfato Glucosa/metabolismo , Glucosa-1-Fosfato Adenililtransferasa , Glicósido Hidrolasas/metabolismo , Nucleotidiltransferasas/metabolismo , Plantas Modificadas Genéticamente/enzimología , Plantas Modificadas Genéticamente/metabolismo , Solanum tuberosum/enzimología , beta-Fructofuranosidasa
8.
Planta ; 209(3): 314-23, 1999 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-10502098

RESUMEN

Freshly cut discs from growing potato tubers were incubated for 3 h with 10 mM orotate or 10 mM uridine. Control discs incubated without precursors showed a 30-40% decrease of uridine nucleotides, but not of adenine nucleotides. Orotate- and uridine-feeding led to a 1.5- to 2-fold increase in the levels of uridine nucleotides compared with control discs, and a 15-30% increase compared with the original values in intact tubers, but did not alter the levels of adenine nucleotides. Between 70-80% of the uridine nucleotides were present as UDPglucose, 15-25% as UTP, and 2-3% as UDP. The increase of uridine nucleotides involved a similar relative increase of UDPglucose, UTP and UDP. It was accompanied by a slight stimulation of the rate of [(14)C]sucrose uptake, a 2-fold stimulation of the rate at which the [(14)C]sucrose was subsequently metabolised, a small increase in the levels of hexose phosphates, glycerate-3-phospate and ADPglucose, and a 30% shift in the allocation of the metabolised label in favour of starch synthesis, resulting in a 2.4-fold stimulation of the rate of starch synthesis. Orotate led to a similar increase of uridine nucleotide levels in the presence of [(14)C]glucose, but did not significantly alter the rate of glucose uptake and metabolism to starch, nor did it increase the rate of sucrose resynthesis. The levels of uridine nucleotides were high in tubers on 6 to 10-week-old potato plants, and declined in tubers on 12 to 15-week-old plants. Comparison with the effect of the uridine nucleotide level in discs shows that the high levels of uridine nucleotides in tubers on young plants will play an important role in determining the rate at which sucrose can be converted to starch, and that the level of uridine nucleotides is probably co-limiting for sucrose-starch conversions in tubers on older plants.

9.
Planta ; 209(3): 338-45, 1999 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-10502101

RESUMEN

Water stress stimulates sucrose synthesis and inhibits starch and cell-wall synthesis in tissue slices of growing potato (Solanum tuberosum L. cv. Desiree) tubers. Based on the analysis of fluxes and metabolites, Geigenberger et al. (1997, Planta 201: 502-518) proposed that water deficits up to -0.72 MPa stimulate sucrose synthesis, leading to decreased starch synthesis as a result of the resulting decline of phosphorylated metabolite levels, whereas more-severe water deficits directly inhibit the use of ADP-glucose. Potato plants with decreased expression of adenosine 5'-diphosphoglucose pyrophosphorylase (AGPase) have been used to test the prediction that the contribution of AGPase to the control of starch synthesis should decrease in severely water-stressed tuber material. Freshly cut slices from wild-type and antisense tubers were incubated at a range of mannitol concentrations (20, 300 and 500 mM) and the metabolism of [(14)C]glucose was analysed. A 86-97% reduction of AGPase activity led to a major but non-stoichiometric inhibition of starch accumulation in intact growing tubers attached to the plant (40-85%), and an inhibition of starch synthesis in non-stressed tuber slices incubated in 20 mM mannitol (60-80%). The inhibition of starch synthesis was accompanied by a 2- to 8-fold increase in the levels of sugars in intact tubers and a 2- to 3-fold stimulation of sucrose synthesis in tuber slices, whereas respiration and cell-wall synthesis were not significantly affected. The strong impact of AGPase on carbon partitioning in non-stressed tubers and tuber slices was retained in slices subjected to moderate water deficit (300 mM mannitol, corresponding to -0.72 MPa). In discs incubated in 500 mM mannitol (corresponding to -1.2 MPa) this response was modified. A 80-97% reduction of AGPase resulted in only a 0-40% inhibition of starch synthesis. Further, the water stress-induced stimulation of sucrose synthesis was abolished in the transformants. The results provide direct evidence that the contribution of AGPase to the control of starch synthesis can be modified by environmental factors, leading to a lower degree of control during severe water deficits. There was also a dramatic decrease in the labelling of cell-wall components in wild-type tuber slices incubated with 300 or 500 mM mannitol. The water stress-induced inhibition of cell-wall synthesis occurred independently of AGPase expression and the accompanying changes in starch and sucrose metabolism, indicating a direct inhibition of cell-wall synthesis in response to water stress.

10.
Plant J ; 19(2): 119-129, 1999 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-10476059

RESUMEN

Water stress stimulates sucrose synthesis and inhibits starch synthesis in wild-type tubers. Antisense and co-suppression potato transformants with decreased expression of sucrose-phosphate synthase (SPS) have been used to analyse the importance of SPS for the regulation of this water-stress induced change in partitioning. (i) In the absence of water stress, a 70-80% decrease in SPS activity led to a 30-50% inhibition of sucrose synthesis and a slight (10-20%) increase of starch synthesis in tuber discs in short-term labelling experiments with low concentrations of labelled glucose. Similar changes were seen in short-term labelling experiments with intact tubers attached to well-watered plants. Provided plants were grown with ample light and water, transformant tubers had a slightly lower water and sucrose content and a similar or even marginally higher starch content than wild-type tubers. (ii) When wild-type tuber slices were incubated with labelled glucose in the presence of mannitol to generate a moderate water deficit (between -0.12 and -0.72 MPa), there was a marked stimulation of sucrose synthesis and inhibition of starch synthesis. A similar stimulation was seen in labelling experiments with wild-type tubers that were attached to water-stressed wild-type plants. These changes were almost completely suppressed in transformants with a 70-80% reduction of SPS activity. (iii) Decreased irrigation led to an increase in the fraction of the dry-matter allocated to tubers in wild-type plants. This shift in allocation was prevented in transformants with reduced expression of SPS. (iv) The results show that operation of SPS and the sucrose cycle in growing potato tubers may lead to a marginal decrease in starch accumulation in non-stressed plants. However, SPS becomes a crucial factor in water-stressed plants because it is required for adaptive changes in tuber metabolism and whole plant allocation.

11.
Planta ; 208(2): 227-38, 1999 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19402252

RESUMEN

Fluxes were investigated in growing tubers from wild-type potato (Solanum tuberosum L. cv.Desiree) and from transformants expressing a yeast invertase in the cytosol under the control of the tuber-specific patatin promoter either alone (EC 3.2.1.26;U-IN2-30) or in combination with a Zymomonas mobilis glucokinase (EC 2.7.1.2; GK3-38) by supplying radiolabelled [14C]sucrose, [14C]glucose or [14C]fructose to tuber discs for a 90-min pulse and subsequent chase incubations of 4 and 12 h, and by supplying [14C]fructose for 2 h and 4 h to intact tubers attached to the mother plant. Contrary to the expectation that this novel route for sucrose degradation would promote starch synthesis,the starch content decreased in the transgenic lines.Labelling kinetics did not reveal whether this was due to changes in the fluxes into or out of starch. However,they demonstrated that glycolysis is enhanced in the transgenic lines in comparison to the wild type. There was also a significant stimulation of sucrose synthesis,leading to a rapid cycle of sucrose degradation and resynthesis. The labelling pattern indicated that sucrose phosphate synthase (SPS; EC 2.4.1.14) was responsible for the enhanced recycling of label into sucrose. In agreement, there was a 4-fold and 6-fold increase in the activation status of SPS in U-IN2-30 and GK3-38,respectively, and experiments with protein phosphatase inhibitors indicated that this activation involves enhanced dephosphorylation of SPS. It is proposed that this activation of SPS is promoted by the elevated glucose 6-phosphate levels in the transgenic tubers.These results indicate the pitfalls of metabolic engineering without a full appreciation of the metabolic system and regulatory circuits present in the tissue under investigation.


Asunto(s)
Glucoquinasa/biosíntesis , Solanum tuberosum/enzimología , Sacarosa/metabolismo , beta-Fructofuranosidasa/biosíntesis , Bacterias/enzimología , Glucosa/metabolismo , Plantas Modificadas Genéticamente , Solanum tuberosum/genética , Solanum tuberosum/microbiología , Transformación Genética , Levaduras/enzimología
12.
Genes Dev ; 12(19): 3059-73, 1998 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-9765207

RESUMEN

The prl1 mutation localized by T-DNA tagging on Arabidopsis chromosome 4-44 confers hypersensitivity to glucose and sucrose. The prl1 mutation results in transcriptional derepression of glucose responsive genes defining a novel suppressor function in glucose signaling. The prl1 mutation also augments the sensitivity of plants to growth hormones including cytokinin, ethylene, abscisic acid, and auxin; stimulates the accumulation of sugars and starch in leaves; and inhibits root elongation. PRL1 encodes a regulatory WD protein that interacts with ATHKAP2, an alpha-importin nuclear import receptor, and is imported into the nucleus in Arabidopsis. Potential functional conservation of PRL1 homologs found in other eukaryotes is indicated by nuclear localization of PRL1 in monkey COS-1 cells and selective interaction of PRL1 with a nuclear protein kinase C-betaII isoenzyme involved in human insulin signaling.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis/genética , Proteínas Portadoras/fisiología , Glucosa/fisiología , Péptidos y Proteínas de Señalización Intracelular , Proteínas Nucleares/fisiología , Reguladores del Crecimiento de las Plantas/fisiología , Proteínas de Plantas , Secuencia de Aminoácidos , Arabidopsis/fisiología , Proteínas Portadoras/genética , Citocininas/fisiología , Regulación de la Expresión Génica de las Plantas , Humanos , Isoenzimas/metabolismo , Carioferinas , Datos de Secuencia Molecular , Mutación , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteína Quinasa C/metabolismo , Proteína Quinasa C beta , Semillas/crecimiento & desarrollo , Semillas/metabolismo , Alineación de Secuencia
13.
Plant Physiol ; 117(4): 1307-16, 1998 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-9701586

RESUMEN

To investigate the short-term effect of elevated temperatures on carbon metabolism in growing potato (Solanum tuberosum L.) tubers, developing tubers were exposed to a range of temperatures between 19 degreesC and 37 degreesC. Incorporation of [14C]glucose (Glc) into starch showed a temperature optimum at 25 degreesC. Increasing the temperature from 23 degreesC or 25 degreesC up to 37 degreesC led to decreased labeling of starch, increased labeling of sucrose (Suc) and intermediates of the respiratory pathway, and increased respiration rates. At elevated temperatures, hexose-phosphate levels were increased, whereas the levels of glycerate-3-phosphate (3PGA) and phosphoenolpyruvate were decreased. There was an increase in pyruvate and malate, and a decrease in isocitrate. The amount of adenine diphosphoglucose (ADPGlc) decreased when tubers were exposed to elevated temperatures. There was a strong correlation between the in vivo levels of 3PGA and ADPGlc in tubers incubated at different temperatures, and the decrease in ADPGlc correlated very well with the decrease in the labeling of starch. In tubers incubated at temperatures above 30 degreesC, the overall activities of Suc synthase and ADPGlc pyrophosphorylase declined slightly, whereas soluble starch synthase and pyruvate kinase remained unchanged. Elevated temperatures led to an activation of Suc phosphate synthase involving a change in its kinetic properties. There was a strong correlation between Suc phosphate synthase activation and the in vivo level of Glc-6-phosphate. It is proposed that elevated temperatures lead to increased rates of respiration, and the resulting decline of 3PGA then inhibits ADPGlc pyrophosphorylase and starch synthesis.

14.
Planta ; 205(3): 428-37, 1998 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-9640668

RESUMEN

Overexpression of inorganic pyrophosphatase (PPase) from Escherichia coli in the cytosol of plants (ppa 1 plants) leads to a decrease of inorganic pyrophosphate (PPi; U. Sonnewald, 1992, Plant J 2: 571-581). The consequences for sucrose-starch interconversions have now been studied in growing potato (Solanum tuberosum L. cv. Desirée) tubers. Sucrose is degraded via sucrose synthase and UDP-glucose pyrophosphorylase in growing tubers, and it was expected that the low PPi in the ppa 1 transformants would restrict the mobilisation of sucrose and conversion to starch. Over-expression of PPase resulted in an accumulation of sucrose and UDP-glucose, and decreased concentrations of hexose phosphates and glycerate-3-phosphate in growing ppa 1 tubers. Unexpectedly, the rate of degradation of [14C] sucrose was increased by up to 30%, the rate of starch synthesis was increased, and the starch content was increased by 20-30% in ppa 1 tubers compared to wild-type tubers. Reasons for this unexpectedly efficient conversion of sucrose to starch in the ppa 1 tubers were investigated. (i) The transformed tubers contained increased activities of several enzymes required for sucrose-starch interconversions including two- to three-fold more sucrose synthase and 60% more ADP-glucose pyrophosphorylase. They also contained 30-100% increased activities of several glycolytic enzymes and amylase, increased protein, and unaltered or slightly decreased starch phosphorylase, acid invertase and mannosidase. (ii) The transformants contained higher pools of uridine nucleotides. As a result, although the UDP-glucose pool is increased two- to threefold, this does not lead to a decrease of UTP or UDP. (iii) The transformants contained twofold larger pools of ATP and ADP, and ADP-glucose was increased by up to threefold. In stored ppa 1 tubers, there were no changes in the activities of glycolytic enzymes, and nucleotides did not increase. It is concluded that in growing tubers PPi has a wider-significance than just being an energy donor for specific reactions in the cytosol. Increased rates of PPi hydrolysis also affect general aspects of cell activity including the levels of nucleotides and protein. Possible ways in which PPi hydrolysis could affect these processes are discussed.


Asunto(s)
Escherichia coli/enzimología , Pirofosfatasas/metabolismo , Almidón/biosíntesis , Sacarosa/metabolismo , Radioisótopos de Carbono , Frío , Enzimas/metabolismo , Escherichia coli/genética , Hexosas/metabolismo , Nucleótidos/metabolismo , Fosfatos/metabolismo , Pirofosfatasas/genética , Solanum tuberosum/metabolismo
15.
Plant J ; 15(1): 109-18, 1998 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19422146

RESUMEN

The original aim of this work was to increase starch accumulation in potato tubers by enhancing their capacity to metabolise sucrose.We previously reported that specific expression of a yeast invertase in the cytosol of tubers led to a 95% reduction in sucrose content, but that this was accompanied by a larger accumulation of glucose and a reduction in starch. In the present paper we introduced a bacterial glucokinase from Zymomonas mobilis into an invertase-expressing transgenic line, with the intention of bringing the glucose into metabolism. Transgenic lines were obtained with up to threefold more glucokinase activity than in the parent invertase line and which did not accumulate glucose. Unexpectedly, there was a further dramatic reduction in starch content, down to 35% of wild-type levels. Biochemical analysis of growing tuber tissue revealed large increases in the metabolic intermediates of glycolysis, organic acids and amino acids,two- to threefold increases in the maximum catalytic activities of key enzymes in the respiratory pathways, and three- to fivefold increases in carbon dioxide production.These changes occur in the lines expressing invertase,and are accentuated following introduction of the second transgene, glucokinase. We conclude that the expression of invertase in potato tubers leads to an increased flux through the glycolytic pathway at the expense of starch synthesis and that heterologous overexpression of glucokinase enhances this change in partitioning.


Asunto(s)
Glucoquinasa/biosíntesis , Glucólisis , Solanum tuberosum/metabolismo , Almidón/biosíntesis , beta-Fructofuranosidasa/biosíntesis , Plantas Modificadas Genéticamente , Solanum tuberosum/enzimología , Solanum tuberosum/genética
16.
Plant Cell ; 7(3): 259-70, 1995 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-7734961

RESUMEN

Constitutive expression of the Escherichia coli ppa gene encoding inorganic pyrophosphatase resulted in sugar accumulation in source leaves and stunted growth of transgenic tobacco plants. The reason for this phenotype was hypothesized to be reduced sucrose utilization and loading into the phloem. To study the role of PPi in phloem cells, a chimeric gene was constructed using the phloem-specific rolC promoter of Agrobacterium rhizogenes to drive the expression of the ppa gene. Removal of cytosolic PPi in those cells resulted in photoassimilate accumulation in source leaves, chlorophyll loss, and reduced plant growth. From these data, it was postulated that sucrose hydrolysis via sucrose synthase is essential for assimilate partitioning. To bypass the PPi-dependent sucrose synthase step, transgenic plants were produced that express various levels of the yeast suc2 gene, which encodes cytosolic invertase, in their phloem cells. To combine the phloem-specific expression of the ppa gene and the suc2 gene, crosses between invertase- and pyrophosphatase-containing transgenic plants were performed. Analysis of their offspring revealed that invertase can complement the phenotypic effects caused by the removal of PPi in phloem cells.


Asunto(s)
Glicósido Hidrolasas/metabolismo , Plantas Modificadas Genéticamente/fisiología , Pirofosfatasas/biosíntesis , Saccharomyces cerevisiae/enzimología , Secuencia de Bases , Citosol/enzimología , Cartilla de ADN , Difosfatos/metabolismo , Escherichia coli/enzimología , Escherichia coli/genética , Expresión Génica , Prueba de Complementación Genética , Inmunohistoquímica , Pirofosfatasa Inorgánica , Modelos Biológicos , Datos de Secuencia Molecular , Plantas Tóxicas , Reacción en Cadena de la Polimerasa , Regiones Promotoras Genéticas , Pirofosfatasas/genética , Rhizobium/genética , Rhizobium/metabolismo , Nicotiana/fisiología , beta-Fructofuranosidasa
17.
Planta ; 189(3): 329-39, 1993 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24178489

RESUMEN

Experiments were carried out to investigate whether sucrose synthase (Susy) catalyses a readily reversible reaction in vivo in potato (Solanum tuberosum L.) tubers, Ricinus communis L. cotyledons, and heterotrophic Chenopodium rubrum L. cell-suspension cultures. (i) The contents of sucrose, fructose, UDP and UDP-glucose were measured and the mass-action ratio compared with the theoretical equilibrium constant. In all three tissues the values were similar. (ii) Evidence for rapid turnover of label in the sucrose pool was obtained in pulse-chase experiments with potato discs and with intact tubers attached to the plant. The unidirectional rates of sucrose synthesis and degradation were considerably higher than the net flux through the sucrose pool in the tubers. (iii) Labelling of the glucosyl and fructosyl moieties of sucrose from [(14)C]glucose in the presence of unlabelled fructose provided evidence that Susy contributes to the movement of label into sucrose. Methods for estimating the contribution of sucrose-phosphate synthase and Susy are presented and it is shown that their relative contribution varies. For example, the contribution of Susy is high in developing tubers and is negligible in harvested tubers which contain low Susy activity. (iv) The absolute values of the forward (v(+1)) and backward (v(-1)) reaction direction of Susy are calculated from the kinetic labelling data. The estimated values of v(+1) and v(-1) are comparable, and much higher than the net flux through the sucrose pool. (v) The estimated concentrations of the substrates and products of Susy in tubers are comparable to the published K m values for potato-tuber Susy. (vi) It is concluded that Susy catalyses a readily reversible reaction in vivo and the relevance of this conclusion is discussed with respect to the regulation of sucrose breakdown and the role of Susy in phloem unloading.

18.
Planta ; 185(1): 81-90, 1991 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24186283

RESUMEN

There was a dramatic alteration in the pattern of metabolism of [U(14)C]glucose by cotyledons of germinating Ricinus communis L. seedlings when phloem transport was inhibited by removing most of the hypocotyl and root. (i) Incorporation into sucrose was decreased two- to threefold, incorporation into starch was stimulated three- to sixfold, and there was a small increase of respiration, (ii) Pulse-chase experiments using (14)C and measurements of the total sucrose content revealed a rapid cycle of sucrose synthesis and degradation. When export is inhibited there is a two- to threefold inhibition of unidirectional sucrose synthesis and a three-fold stimulation of unidirectional sucrose degradation. As a result, the net flux switches from rapid net synthesis to slow net mobilisation of sucrose, (iii) The cotyledons contained adequate activities of sucrose synthase, acid and alkaline invertase and sucrose-phosphate synthase to catalyse the observed rate of sucrose breakdown and synthesis, respectively. The extracted activities of the degradative enzymes did not change after inhibiting phloem transport. The maximum activity of sucrose-phosphate synthase was also unaltered, but the activity measured in the presence of limiting substrates and phosphate was decreased twofold, indicating that sucrose-phosphate synthase has been deactivated by a mechanism analogous to that occurring in spinach leaves. (iv) The switch from sucrose export to starch synthesis when phloem transport was prevented was accompanied by only a small (20-50%) increase of the sucrose concentration in the cotyledons, no change of hexose-phosphates, an increase (16-70%) of fructose-1,6-bisphosphate and triosephosphate, and a small decrease (15-30%) of glycerate-3-phosphate, glycerate-2-phosphate and phosphoenolpyruvate. Fructose-2,6-bisphosphate and pyrophosphate doubled when 10 mM phosphate was included in the medium bathing the cotyledons, but not when phosphate was omitted (v) It is concluded that a futile cycle involving simultaneous synthesis and degradation of sucrose allows sucrose metabolism to respond in an extremely sensitive manner when phloem export is inhibited. There is a dramatic switch of flux through the sucrose pool, even though there are only marginal changes in the concentrations of sucrose and metabolites, or in the rate of respiration.

19.
Planta ; 185(4): 563-8, 1991 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24186535

RESUMEN

The interactions between carbon and nitrogen metabolism in cotyledons of germinating Ricinus communis L. seedlings were investigated. The endosperm was removed for 6-d-old seedlings and their cotyledons were supplied with 50 mM glucose and mM potassium phosphate without a nitrogen source, or supplemented with 10 mM glutamine or 5 mM NH4Cl. [U(14)C] Glucose labelling patterns were used to investigate the effect of fluxes. Addition of glutamine or NH4Cl led to a 3.5- to 5-fold increase of labelling in amino acids (most of which were exported) and increased (14)CO2 release. Glutamine also led to a stimulation of glucose uptake, sucrose synthesis and export. Measurements of metabolites showed that glutamine or NH4Cl led to a decrease of a-ketoglutarate, pyruvate, phosphoenolpyruvate, glycerate-2-phosphate and glycerate-3-phosphate, a small increase of triose-phosphate and fructose-1,6-bisphosphate, a small decrease of hexose-phosphate (in the case of glutamine), and an increase of UDP glucose. In both treatments, fructose-2,6-bisphosphate doubled, and inorganic pyrophosphate decreased slightly. Similar results were obtained in detached cotyledons, except that glutamine did not alter the rate of glucose uptake or sucrose synthesis. The increased rate of sucrose synthesis after supplying glutamine to intact seedlings is ascribed to an increased rate of sucrose export from the cotyledons due to enhanced water flow in the phloem, brought about by loading of glutamine. The doubling of the rate of glycolysis after adding glutamine or NH4Cl in intact seedlings or excised cotyledons is ascribed to activation of the terminal enzymes in glycolysis, pyruvate kinase and phosphoenolpyruvate carboxylase. The resulting decrease of phosphoenolpyruvate and glycerate-3-phosphate leads to activation of phosphofructokinase. It also relieves inhibition of fructose-6-phosphate,2-kinase, leading to increased fructose-2,6-bisphosphate and activation of pyrophosphate; fructose-6-phosphate phosphotransferase.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA