Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nature ; 608(7923): 569-577, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35922514

RESUMEN

A major challenge in human genetics is to identify the molecular mechanisms of trait-associated and disease-associated variants. To achieve this, quantitative trait locus (QTL) mapping of genetic variants with intermediate molecular phenotypes such as gene expression and splicing have been widely adopted1,2. However, despite successes, the molecular basis for a considerable fraction of trait-associated and disease-associated variants remains unclear3,4. Here we show that ADAR-mediated adenosine-to-inosine RNA editing, a post-transcriptional event vital for suppressing cellular double-stranded RNA (dsRNA)-mediated innate immune interferon responses5-11, is an important potential mechanism underlying genetic variants associated with common inflammatory diseases. We identified and characterized 30,319 cis-RNA editing QTLs (edQTLs) across 49 human tissues. These edQTLs were significantly enriched in genome-wide association study signals for autoimmune and immune-mediated diseases. Colocalization analysis of edQTLs with disease risk loci further pinpointed key, putatively immunogenic dsRNAs formed by expected inverted repeat Alu elements as well as unexpected, highly over-represented cis-natural antisense transcripts. Furthermore, inflammatory disease risk variants, in aggregate, were associated with reduced editing of nearby dsRNAs and induced interferon responses in inflammatory diseases. This unique directional effect agrees with the established mechanism that lack of RNA editing by ADAR1 leads to the specific activation of the dsRNA sensor MDA5 and subsequent interferon responses and inflammation7-9. Our findings implicate cellular dsRNA editing and sensing as a previously underappreciated mechanism of common inflammatory diseases.


Asunto(s)
Adenosina Desaminasa , Predisposición Genética a la Enfermedad , Enfermedades del Sistema Inmune , Inflamación , Edición de ARN , ARN Bicatenario , Adenosina/metabolismo , Adenosina Desaminasa/genética , Adenosina Desaminasa/metabolismo , Elementos Alu/genética , Enfermedades Autoinmunes/genética , Enfermedades Autoinmunes/inmunología , Enfermedades Autoinmunes/patología , Estudio de Asociación del Genoma Completo , Humanos , Enfermedades del Sistema Inmune/genética , Enfermedades del Sistema Inmune/inmunología , Enfermedades del Sistema Inmune/patología , Inmunidad Innata , Inflamación/genética , Inflamación/inmunología , Inflamación/patología , Inosina/metabolismo , Helicasa Inducida por Interferón IFIH1/metabolismo , Interferones/genética , Interferones/inmunología , Sitios de Carácter Cuantitativo/genética , Edición de ARN/genética , ARN Bicatenario/genética , Proteínas de Unión al ARN/metabolismo
2.
Methods Mol Biol ; 2329: 195-204, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34085224

RESUMEN

CRISPR/Cas9 system is a powerful technique for genome editing and engineering but obtaining a sizeable population of edited cells can be challenging for some cell types. CRISPR/Cas9-induced cell cycle arrest is a possible cause of this barrier to efficient editing; thus, it is desirable to know the cell cycle progression profile of any given cell line or type of interest resulting from CRISPR/Cas9 treatment. Here we describe a flow cytometry-based assay that enables the determination of cell cycle progression in the presence of CRISPR/Cas9 treatment, in addition to the transfection and expression efficiencies of Cas9 vectors. This assay can also easily determine the effect of various interventions on obtaining a larger pool of Cas9-treated cells.


Asunto(s)
Ciclo Celular , Citometría de Flujo/métodos , Edición Génica/métodos , Sistemas CRISPR-Cas , Línea Celular , Química Clic , Técnica del Anticuerpo Fluorescente , Humanos , Transfección
3.
Nucleic Acids Res ; 48(16): 9067-9081, 2020 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-32687165

RESUMEN

While the mechanism of CRISPR/Cas9 cleavage is understood, the basis for the large variation in mutant recovery for a given target sequence between cell lines is much less clear. We hypothesized that this variation may be due to differences in how the DNA damage response affects cell cycle progression. We used incorporation of EdU as a marker of cell cycle progression to analyze the response of several human cell lines to CRISPR/Cas9 treatment with a single guide directed to a unique locus. Cell lines with functionally wild-type TP53 exhibited higher levels of cell cycle arrest compared to lines without. Chemical inhibition of TP53 protein combined with TP53 and RB1 transcript silencing alleviated induced arrest in TP53+/+ cells. Using dCas9, we determined this arrest is driven in part by Cas9 binding to DNA. Additionally, wild-type Cas9 induced fewer 53BP1 foci in TP53+/+ cells compared to TP53-/- cells and DD-Cas9, suggesting that differences in break sensing are responsible for cell cycle arrest variation. We conclude that CRISPR/Cas9 treatment induces a cell cycle arrest dependent on functional TP53 as well as Cas9 DNA binding and cleavage. Our findings suggest that transient inhibition of TP53 may increase genome editing recovery in primary and TP53+/+ cell lines.


Asunto(s)
Sistemas CRISPR-Cas/genética , Proteínas de Unión a Retinoblastoma/genética , Proteína p53 Supresora de Tumor/genética , Proteína 1 de Unión al Supresor Tumoral P53/genética , Ubiquitina-Proteína Ligasas/genética , Proteína 9 Asociada a CRISPR/genética , Puntos de Control del Ciclo Celular/genética , Línea Celular , Daño del ADN/genética , Edición Génica/métodos , Humanos
4.
Bio Protoc ; 7(5): e2163, 2017 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-34458476

RESUMEN

The incorporation of the CRISPR/Cas9 bacterial immune system into the genetic engineering toolbox has led to the development of several new methods for genome manipulation ( Auer et al., 2014 ; Byrne et al., 2015 ). We took advantage of the ability of Cas9 to generate blunt-ended double-strand breaks ( Jinek et al., 2012 ) to introduce exogenous DNA in a highly precise manner through the exploitation of non-homologous end-joining DNA repair machinery ( Geisinger et al., 2016 ). This protocol has been successfully applied to traditional immortalized cell lines and human induced pluripotent stem cells. Here we present a generalized protocol for knock-in blunt ligation, using HEK293 cells as an example.

5.
Nucleic Acids Res ; 44(8): e76, 2016 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-26762978

RESUMEN

The CRISPR/Cas9 system facilitates precise DNA modifications by generating RNA-guided blunt-ended double-strand breaks. We demonstrate that guide RNA pairs generate deletions that are repaired with a high level of precision by non-homologous end-joining in mammalian cells. We present a method called knock-in blunt ligation for exploiting these breaks to insert exogenous PCR-generated sequences in a homology-independent manner without loss of additional nucleotides. This method is useful for making precise additions to the genome such as insertions of marker gene cassettes or functional elements, without the need for homology arms. We successfully utilized this method in human and mouse cells to insert fluorescent protein cassettes into various loci, with efficiencies up to 36% in HEK293 cells without selection. We also created versions of Cas9 fused to the FKBP12-L106P destabilization domain in an effort to improve Cas9 performance. Our in vivo blunt-end cloning method and destabilization-domain-fused Cas9 variant increase the repertoire of precision genome engineering approaches.


Asunto(s)
Proteínas Asociadas a CRISPR/genética , Sistemas CRISPR-Cas/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Reparación del ADN por Unión de Extremidades/genética , Ingeniería Genética/métodos , Animales , Línea Celular , Roturas del ADN de Doble Cadena , Genoma/genética , Células HEK293 , Humanos , Ratones , Edición de ARN/genética , ARN Guía de Kinetoplastida/genética
6.
Methods Mol Biol ; 1239: 29-38, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25408400

RESUMEN

ΦC31 integrase, a site-specific large serine recombinase, is a useful tool for genome engineering in a variety of eukaryotic species and cell types. ΦC31 integrase performs efficient recombination between its attB site and either its own placed attP site or a partially mismatched genomic pseudo attP site. Bxb1 integrase, another large serine recombinase, has a similar level of recombinational activity, but recognizes only its own attB and attP sites. Previously, we have used these integrases sequentially to integrate plasmid DNA into the genome. This approach relied on placing a landing pad attP for Bxb1 integrase in the genome by using phiC31 integrase-mediated recombination at a genomic pseudo attP site. In this chapter, we present a protocol for using these integrases simultaneously to facilitate cassette exchange at a predefined location. This approach permits greater control and accuracy over integration. We also present a general method for using polymerase chain reaction assays to verify that the desired cassette exchange occurred successfully.


Asunto(s)
Bacteriófagos/enzimología , Recombinación Homóloga , Integrasas/metabolismo , Sitios de Ligazón Microbiológica , Línea Celular , Ingeniería Genética/métodos , Sitios Genéticos , Reacción en Cadena de la Polimerasa
7.
PLoS One ; 9(4): e96279, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24781921

RESUMEN

A cell therapy strategy utilizing genetically-corrected induced pluripotent stem cells (iPSC) may be an attractive approach for genetic disorders such as muscular dystrophies. Methods for genetic engineering of iPSC that emphasize precision and minimize random integration would be beneficial. We demonstrate here an approach in the mdx mouse model of Duchenne muscular dystrophy that focuses on the use of site-specific recombinases to achieve genetic engineering. We employed non-viral, plasmid-mediated methods to reprogram mdx fibroblasts, using phiC31 integrase to insert a single copy of the reprogramming genes at a safe location in the genome. We next used Bxb1 integrase to add the therapeutic full-length dystrophin cDNA to the iPSC in a site-specific manner. Unwanted DNA sequences, including the reprogramming genes, were then precisely deleted with Cre resolvase. Pluripotency of the iPSC was analyzed before and after gene addition, and ability of the genetically corrected iPSC to differentiate into myogenic precursors was evaluated by morphology, immunohistochemistry, qRT-PCR, FACS analysis, and intramuscular engraftment. These data demonstrate a non-viral, reprogramming-plus-gene addition genetic engineering strategy utilizing site-specific recombinases that can be applied easily to mouse cells. This work introduces a significant level of precision in the genetic engineering of iPSC that can be built upon in future studies.


Asunto(s)
Reprogramación Celular , Distrofina/genética , Ingeniería Genética/métodos , Células Madre Pluripotentes Inducidas/metabolismo , Integrasas/metabolismo , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/terapia , Animales , Línea Celular , Terapia Genética/métodos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/trasplante , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos mdx/genética , Desarrollo de Músculos
8.
Stem Cells ; 29(11): 1696-704, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21898697

RESUMEN

Induced pluripotent stem cells (iPSCs) have revolutionized the stem cell field. iPSCs are most often produced by using retroviruses. However, the resulting cells may be ill-suited for clinical applications. Many alternative strategies to make iPSCs have been developed, but the nonintegrating strategies tend to be inefficient, while the integrating strategies involve random integration. Here, we report a facile strategy to create murine iPSCs that uses plasmid DNA and single transfection with sequence-specific recombinases. PhiC31 integrase was used to insert the reprogramming cassette into the genome, producing iPSCs. Cre recombinase was then used for excision of the reprogramming genes. The iPSCs were demonstrated to be pluripotent by in vitro and in vivo criteria, both before and after excision of the reprogramming cassette. This strategy is comparable with retroviral approaches in efficiency, but is nonhazardous for the user, simple to perform, and results in nonrandom integration of a reprogramming cassette that can be readily deleted. We demonstrated the efficiency of this reprogramming and excision strategy in two accessible cell types, fibroblasts and adipose stem cells. This simple strategy produces pluripotent stem cells that have the potential to be used in a clinical setting.


Asunto(s)
ADN Nucleotidiltransferasas/metabolismo , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Plásmidos/genética , Tejido Adiposo/citología , Animales , Southern Blotting , Células Cultivadas , Reprogramación Celular/genética , Reprogramación Celular/fisiología , ADN Nucleotidiltransferasas/genética , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Ratones , Reacción en Cadena de la Polimerasa
9.
Genome Res ; 21(7): 1065-73, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21507882

RESUMEN

Although central to many studies of phenotypic variation and disease susceptibility, characterizing the genetic architecture of complex traits has been unexpectedly difficult. For example, most of the susceptibility genes that contribute to highly heritable conditions such as obesity and type 2 diabetes (T2D) remain to be identified despite intensive study. We took advantage of mouse models of diet-induced metabolic disease in chromosome substitution strains (CSSs) both to characterize the genetic architecture of diet-induced obesity and glucose homeostasis and to test the feasibility of gene discovery. Beginning with a survey of CSSs, followed with genetic and phenotypic analysis of congenic, subcongenic, and subsubcongenic strains, we identified a remarkable number of closely linked, phenotypically heterogeneous quantitative trait loci (QTLs) on mouse chromosome 6 that have unexpectedly large phenotypic effects. Although fine-mapping reduced the genomic intervals and gene content of these QTLs over 3000-fold, the average phenotypic effect on body weight was reduced less than threefold, highlighting the "fractal" nature of genetic architecture in mice. Despite this genetic complexity, we found evidence for 14 QTLs in only 32 recombination events in less than 3000 mice, and with an average of four genes located within the three body weight QTLs in the subsubcongenic strains. For Obrq2a1, genetic and functional studies collectively identified the solute receptor Slc35b4 as a regulator of obesity, insulin resistance, and gluconeogenesis. This work demonstrated the unique power of CSSs as a platform for studying complex genetic traits and identifying QTLs.


Asunto(s)
Glucosa/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Homeostasis/genética , Proteínas de Transporte de Nucleótidos/genética , Obesidad/genética , Sitios de Carácter Cuantitativo , Animales , Peso Corporal/genética , Mapeo Cromosómico , Cromosomas de los Mamíferos/genética , Diabetes Mellitus Tipo 2/genética , Dieta , Regulación de la Expresión Génica , Gluconeogénesis/genética , Células Hep G2 , Humanos , Resistencia a la Insulina/genética , Masculino , Ratones , Ratones Congénicos , Modelos Animales , Proteínas de Transporte de Nucleótidos/metabolismo , Fenotipo , Análisis de Secuencia de ADN
10.
Proc Natl Acad Sci U S A ; 105(50): 19649-54, 2008 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-19064926

RESUMEN

Emerging evidence suggests that components of the ubiquitin-proteasome system are involved in the regulation of gene expression. A variety of factors, including transcriptional activators, coactivators, and histones, are controlled by ubiquitylation, but the mechanisms through which this modification can function in transcription are generally unknown. Here, we report that the Saccharomyces cerevisiae protein Asr1 is a RING finger ubiquitin-ligase that binds directly to RNA polymerase II via the carboxyl-terminal domain (CTD) of the largest subunit of the enzyme. We show that interaction of Asr1 with the CTD depends on serine-5 phosphorylation within the CTD and results in ubiquitylation of at least 2 subunits of the enzyme, Rpb1 and Rpb2. Ubiquitylation by Asr1 leads to the ejection of the Rpb4/Rpb7 heterodimer from the polymerase complex and is associated with inactivation of polymerase function. Our data demonstrate that ubiquitylation can directly alter the subunit composition of a core component of the transcriptional machinery and provide a paradigm for how ubiquitin can influence gene activity.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , ARN Polimerasa II/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Regulación Fúngica de la Expresión Génica , Datos de Secuencia Molecular , Subunidades de Proteína/metabolismo , Saccharomyces cerevisiae/genética , Ubiquitina/genética , Ubiquitina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...