Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 9(1): 1700, 2018 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-29703891

RESUMEN

Hutchinson-Gilford Progeria Syndrome (HGPS) is a rare, but devastating genetic disease characterized by segmental premature aging, with cardiovascular disease being the main cause of death. Cells from HGPS patients accumulate progerin, a permanently farnesylated, toxic form of Lamin A, disrupting the nuclear shape and chromatin organization, leading to DNA-damage accumulation and senescence. Therapeutic approaches targeting farnesylation or aiming to reduce progerin levels have provided only partial health improvements. Recently, we identified Remodelin, a small-molecule agent that leads to amelioration of HGPS cellular defects through inhibition of the enzyme N-acetyltransferase 10 (NAT10). Here, we show the preclinical data demonstrating that targeting NAT10 in vivo, either via chemical inhibition or genetic depletion, significantly enhances the healthspan in a Lmna G609G HGPS mouse model. Collectively, the data provided here highlights NAT10 as a potential therapeutic target for HGPS.


Asunto(s)
Envejecimiento Prematuro/tratamiento farmacológico , Inestabilidad Genómica/efectos de los fármacos , Hidrazonas/farmacología , Acetiltransferasa A N-Terminal/antagonistas & inhibidores , Progeria/tratamiento farmacológico , Tiazoles/farmacología , Envejecimiento Prematuro/genética , Envejecimiento Prematuro/mortalidad , Envejecimiento Prematuro/patología , Animales , Daño del ADN/efectos de los fármacos , Daño del ADN/genética , Modelos Animales de Enfermedad , Femenino , Inestabilidad Genómica/genética , Humanos , Hidrazonas/uso terapéutico , Estimación de Kaplan-Meier , Lamina Tipo A/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Acetiltransferasa A N-Terminal/genética , Acetiltransferasa A N-Terminal/metabolismo , Acetiltransferasas N-Terminal , Progeria/genética , Progeria/mortalidad , Progeria/patología , Tiazoles/uso terapéutico
2.
EMBO Rep ; 18(6): 1000-1012, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28389464

RESUMEN

Camptothecin-induced locking of topoisomerase 1 on DNA generates a physical barrier to replication fork progression and creates topological stress. By allowing replisome rotation, absence of the Tof1/Csm3 complex promotes the conversion of impending topological stress to DNA catenation and causes camptothecin hypersensitivity. Through synthetic viability screening, we discovered that histone H4 K16 deacetylation drives the sensitivity of yeast cells to camptothecin and that inactivation of this pathway by mutating H4 K16 or the genes SIR1-4 suppresses much of the hypersensitivity of tof1∆ strains towards this agent. We show that disruption of rDNA or telomeric silencing does not mediate camptothecin resistance but that disruption of Sir1-dependent chromatin domains is sufficient to suppress camptothecin sensitivity in wild-type and tof1∆ cells. We suggest that topoisomerase 1 inhibition in proximity of these domains causes topological stress that leads to DNA hypercatenation, especially in the absence of the Tof1/Csm3 complex. Finally, we provide evidence of the evolutionarily conservation of this mechanism.


Asunto(s)
Camptotecina/farmacología , Cromatina , Proteínas de Saccharomyces cerevisiae/metabolismo , Benzamidas/farmacología , Camptotecina/metabolismo , Proteínas de Ciclo Celular , Daño del ADN , Replicación del ADN , ADN-Topoisomerasas de Tipo I/genética , ADN-Topoisomerasas de Tipo I/metabolismo , ADN de Hongos/genética , ADN Ribosómico/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Humanos , Naftoles/farmacología , Saccharomyces cerevisiae/efectos de los fármacos , Proteínas de Saccharomyces cerevisiae/genética , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/genética , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/metabolismo
3.
EMBO J ; 34(11): 1509-22, 2015 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-25899817

RESUMEN

DNA double-strand break (DSB) repair by homologous recombination (HR) requires 3' single-stranded DNA (ssDNA) generation by 5' DNA-end resection. During meiosis, yeast Sae2 cooperates with the nuclease Mre11 to remove covalently bound Spo11 from DSB termini, allowing resection and HR to ensue. Mitotic roles of Sae2 and Mre11 nuclease have remained enigmatic, however, since cells lacking these display modest resection defects but marked DNA damage hypersensitivities. By combining classic genetic suppressor screening with high-throughput DNA sequencing, we identify Mre11 mutations that strongly suppress DNA damage sensitivities of sae2∆ cells. By assessing the impacts of these mutations at the cellular, biochemical and structural levels, we propose that, in addition to promoting resection, a crucial role for Sae2 and Mre11 nuclease activity in mitotic DSB repair is to facilitate the removal of Mre11 from ssDNA associated with DSB ends. Thus, without Sae2 or Mre11 nuclease activity, Mre11 bound to partly processed DSBs impairs strand invasion and HR.


Asunto(s)
Reparación del ADN/fisiología , ADN de Hongos/metabolismo , ADN de Cadena Simple/metabolismo , Endonucleasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , ADN de Hongos/genética , ADN de Cadena Simple/genética , Endodesoxirribonucleasas/genética , Endodesoxirribonucleasas/metabolismo , Endonucleasas/genética , Exodesoxirribonucleasas/genética , Exodesoxirribonucleasas/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
4.
Cancer Res ; 74(5): 1588-97, 2014 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-24419086

RESUMEN

The discovery of chromosomal translocations in leukemia/lymphoma and sarcomas presaged a widespread discovery in epithelial tumors. With the advent of new-generation whole-genome sequencing, many consistent chromosomal abnormalities have been described together with putative driver and passenger mutations. The multiple genetic changes required in mouse models to assess the interrelationship of abnormalities and other mutations are severe limitations. Here, we show that sequential gene targeting of embryonic stem cells can be used to yield progenitor cells to generate chimeric offspring carrying all the genetic changes needed for cell-specific cancer. Illustrating the technology, we show that MLL-ENL fusion is sufficient for lethal leukocytosis and proof of genome integrity comes from germline transmission of the sequentially targeted alleles. This accelerated technology leads to a reduction in mouse numbers (contributing significantly to the 3Rs), allows fluorescence tagging of cancer-initiating cells, and provides a flexible platform for interrogating the interaction of chromosomal abnormalities with mutations.


Asunto(s)
Marcación de Gen/métodos , Neoplasias/genética , Proteínas de Fusión Oncogénica/genética , Translocación Genética/genética , Alelos , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Aberraciones Cromosómicas , Células Madre Embrionarias/metabolismo , Humanos , Leucocitosis/genética , Leucocitosis/metabolismo , Ratones , Datos de Secuencia Molecular , Mutación/genética , Neoplasias/metabolismo , Proteínas de Fusión Oncogénica/metabolismo , Células Madre/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA