Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Metab ; 66: 101638, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36400403

RESUMEN

OBJECTIVE: Glucose-dependent insulinotropic polypeptide (GIP) is one of the two major incretin factors that regulate metabolic homeostasis. Genetic ablation of its receptor (GIPR) in mice confers protection against diet-induced obesity (DIO), while GIPR neutralizing antibodies produce additive weight reduction when combined with GLP-1R agonists in preclinical models and clinical trials. Conversely, GIPR agonists have been shown to promote weight loss in rodents, while dual GLP-1R/GIPR agonists have proven superior to GLP-1R monoagonists for weight reduction in clinical trials. We sought to develop a long-acting, specific GIPR peptide antagonist as a tool compound suitable for investigating GIPR pharmacology in both rodent and human systems. METHODS: We report a structure-activity relationship of GIPR peptide antagonists based on the human and mouse GIP sequences with fatty acid-based protraction. We assessed these compounds in vitro, in vivo in DIO mice, and ex vivo in islets from human donors. RESULTS: We report the discovery of a GIP(5-31) palmitoylated analogue, [Nα-Ac, L14, R18, E21] hGIP(5-31)-K11 (γE-C16), which potently inhibits in vitro GIP-mediated cAMP generation at both the hGIPR and mGIPR. In vivo, this peptide effectively blocks GIP-mediated reductions in glycemia in response to exogenous and endogenous GIP and displays a circulating pharmacokinetic profile amenable for once-daily dosing in rodents. Co-administration with the GLP-1R agonist semaglutide and this GIPR peptide antagonist potentiates weight loss compared to semaglutide alone. Finally, this antagonist inhibits GIP- but not GLP-1-stimulated insulin secretion in intact human islets. CONCLUSIONS: Our work demonstrates the discovery of a potent, specific, and long-acting GIPR peptide antagonist that effectively blocks GIP action in vitro, ex vivo in human islets, and in vivo in mice while producing additive weight-loss when combined with a GLP-1R agonist in DIO mice.


Asunto(s)
Receptor del Péptido 1 Similar al Glucagón , Receptores de la Hormona Gastrointestinal , Roedores , Animales , Humanos , Ratones , Polipéptido Inhibidor Gástrico/antagonistas & inhibidores , Polipéptido Inhibidor Gástrico/metabolismo , Péptido 1 Similar al Glucagón/metabolismo , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Ratones Obesos , Péptidos/farmacología , Péptidos/química , Roedores/metabolismo , Pérdida de Peso , Receptores de la Hormona Gastrointestinal/antagonistas & inhibidores
2.
J Med Chem ; 64(8): 4697-4708, 2021 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-33821647

RESUMEN

Antagonism of glucagon's biological action is a proven strategy for decreasing glucose in diabetic animals and patients. To achieve full, potent, and selective suppression, we chemically optimized N-terminally truncated glucagon fragments for the identification and establishment of the minimum sequence peptide, [Glu9]glucagon(6-29) amide (11) as a full antagonist in cellular signaling and receptor binding (IC50 = 36 nM). Substitution of Phe6 with l-3-phenyllactic acid (Pla) produced [Pla6, Glu9]glucagon(6-29) amide (21), resulting in a 3-fold improvement in receptor binding (IC50 = 12 nM) and enhanced antagonist potency. Further substitution of Glu9 and Asn28 with aspartic acid yielded [Pla6, Asp28]glucagon amide (26), which demonstrated a further increase in inhibitory potency (IC50 = 9 nM), and improved aqueous solubility. Peptide 26 and a palmitoylated analogue, [Pla6, Lys10(γGluγGlu-C16), Asp28]glucagon(6-29) amide (31), displayed sustained duration in vivo action that successfully reversed glucagon-induced glucose elevation in mice.


Asunto(s)
Glucagón/química , Péptidos/metabolismo , Receptores de Glucagón/metabolismo , Amidas/química , Secuencia de Aminoácidos , Animales , Glucemia/análisis , AMP Cíclico/metabolismo , Glucagón/administración & dosificación , Receptor del Péptido 1 Similar al Glucagón/antagonistas & inhibidores , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Células HEK293 , Semivida , Humanos , Inyecciones Subcutáneas , Masculino , Ratones , Ratones Endogámicos C57BL , Péptidos/administración & dosificación , Péptidos/química , Unión Proteica , Receptores de Glucagón/antagonistas & inhibidores , Solubilidad , Relación Estructura-Actividad
3.
J Med Chem ; 63(11): 6134-6143, 2020 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-32406685

RESUMEN

Native insulin is susceptible to biophysical aggregation and fibril formation, promoted by manual agitation and elevated temperatures. The safety of the drug and its application to alternative forms of administration could be enhanced through the identification of chemical modifications that strengthen its physical stability without compromising its biological properties. Complex polysialic acids (PSAs) exist naturally and provide a means to enhance the physical properties of peptide therapeutics. A set of insulin analogues site-specifically derivatized with sialic acid were prepared in an overall yield of 50-60%. Addition of a single or multiple sialic acids conferred remarkable enhancement to the biophysical stability of human insulin while maintaining its potency. The time to the onset of fibrillation was extended by more than 10-fold relative to that of the native hormone. These results demonstrate that simplified sialic acid conjugates represent a viable alternative to complex natural PSAs in increasing the stability of therapeutic peptides.


Asunto(s)
Insulina/análogos & derivados , Ácido N-Acetilneuramínico/química , Animales , Glucemia/análisis , Diabetes Mellitus Experimental/inducido químicamente , Diabetes Mellitus Experimental/tratamiento farmacológico , Células HEK293 , Humanos , Insulina/farmacocinética , Insulina/uso terapéutico , Masculino , Ratones , Ratones Endogámicos C57BL , Oligopéptidos/síntesis química , Oligopéptidos/química , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Ácidos Siálicos/química , Equivalencia Terapéutica
4.
ACS Chem Biol ; 14(8): 1829-1835, 2019 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-31343157

RESUMEN

Insulin is the principal hormone involved in the regulation of metabolism and has served a seminal role in the treatment of diabetes. Building upon advances in insulin synthetic methodology, we have developed a straightforward route to novel insulins containing a fourth disulfide bond in a [3 + 1] fashion establishing the first disulfide scan of the hormone. All the targeted analogs accommodated the constraint to demonstrate an unexpected conformational flexibility of native insulin. The bioactivity was established for the constrained (4-DS) and unconstrained (3-DS) analogs by in vitro methods, and extended to in vivo study for select peptides. We also identified residue B10 as a preferred anchor to introduce a tether that would regulate insulin bioactivity. We believe that the described [3 + 1] methodology might constitute the preferred approach for performing similar disulfide scanning in peptides that contain multiple disulfides.


Asunto(s)
Disulfuros/química , Insulina/análogos & derivados , Secuencia de Aminoácidos , Disulfuros/síntesis química , Insulina/síntesis química , Conformación Proteica , Ingeniería de Proteínas/métodos
5.
Peptides ; 120: 170116, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31348991

RESUMEN

Insulin-like peptide 5 (INSL5) is a member of the insulin-like family of peptides. It has been reported to be orexigenic in rodent models of obesity with impaired glucose metabolism. We attempted to confirm this property as a first step in establishing the ability of INSL5 to successfully integrate with other agents more proven in their ability to reverse obesity and improve metabolism. INSL5 was chemically synthesized by two alternative methods to a native form and one that was site-specifically conjugated to a 20 KDa polyethylene glycol (PEG) polymer. The pharmacology of each peptide was assessed by high-dose chronic administration in normal and obese mice. INSL5 failed to produce pharmacologically relevant effects on food intake, body weight or glucose control indicative of a negligible role of the peptide in the control of feeding and glucose metabolism.


Asunto(s)
Peso Corporal/efectos de los fármacos , Ingestión de Alimentos/efectos de los fármacos , Conducta Alimentaria/efectos de los fármacos , Glucosa/metabolismo , Obesidad/metabolismo , Hormonas Peptídicas/farmacología , Animales , Ratones , Ratones Obesos , Obesidad/tratamiento farmacológico , Obesidad/patología , Hormonas Peptídicas/síntesis química , Hormonas Peptídicas/química
6.
Org Lett ; 20(12): 3695-3699, 2018 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-29874090

RESUMEN

A simplified route to synthesis of INSL5 is reported, where the elimination of intermediate purification steps and nonconventional disulfide pairing results in final yields that are an order of magnitude higher than in previously reported stepwise syntheses. The intramolecular disulfide of A-chain was produced by a thiol displacement of StBu-protected cysteine, and was followed by an A-B chain disulfide formation in dimethylsulfoxide (DMSO). The final disulfide was formed by deprotection of StBu-cysteines in hydrofluoric acid (HF) at room temperature, which is a historical approach infrequently employed today, followed by oxidation using 2,2-dithiobis(5-nitropyridine) (DTNP) in acidic aqueous buffer. Throughout the synthesis, an isoacyl surrogate to a midsequence native amide bond was utilized to enhance solubility of the intermediate compounds.


Asunto(s)
Insulina/síntesis química , Proteínas/síntesis química , Secuencia de Aminoácidos , Disulfuros , Humanos , Estructura Molecular , Péptidos
7.
ChemMedChem ; 13(8): 852-859, 2018 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-29466617

RESUMEN

We report the synthesis and in vitro bioactivity assessment for an insulin-like peptide 5 (INSL5) analogue that was recently discovered as a genetic mutation in an Amish population. The mutation was associated with improved metabolic status, and receptor-based antagonism was proposed as a potential mechanism for the altered phenotype. We determined the specific peptide analogue to be fully potent and of maximal efficacy at the human relaxin family peptide receptor 4 (RXFP4), suggesting an alternative basis for the observed effect. In preparation of this synthetically challenging hormone, we have introduced several improvements such as implementation of isoacyl chemistry for high-efficiency preparation of INSL5 B-chain and selective intramolecular A6-11 disulfide formation as a first step in sequential disulfide assembly.


Asunto(s)
Insulina/genética , Insulina/metabolismo , Mutación Puntual , Proteínas/genética , Proteínas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Péptidos/metabolismo , Secuencia de Aminoácidos , Ciclización , Humanos , Insulina/síntesis química , Insulina/química , Yodo/metabolismo , Oxidación-Reducción , Proteínas/síntesis química , Proteínas/química
8.
Peptides ; 100: 18-23, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29412818

RESUMEN

In the treatment of insulin-dependent diabetes the risk of a fatal insulin overdose is a persistent fear to most patients. In order to potentially reduce the risk of overdose, we report the design, synthesis, and biochemical characterization of a set of insulin analogs designed to be fractionally reduced in maximal agonism at the insulin receptor isoforms. These analogs consist of native insulin that is site-specifically conjugated to a peptide-based insulin receptor antagonist. The structural refinement of the antagonist once conjugated to insulin provided a set of partial agonists exhibiting between 25 and 70% of the maximal agonism of native insulin at the two insulin receptor isoforms, with only slight differences in inherent potency. These rationally-designed partial agonists provide an approach to interrogate whether control of maximal activity can provide glycemic control with reduced hypoglycemic risk.


Asunto(s)
Antígenos CD/química , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Sobredosis de Droga/prevención & control , Insulina/uso terapéutico , Péptidos/uso terapéutico , Receptor de Insulina/química , Antígenos CD/genética , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/patología , Sobredosis de Droga/genética , Humanos , Hipoglucemiantes/química , Hipoglucemiantes/uso terapéutico , Insulina/efectos adversos , Insulina/análogos & derivados , Insulina/química , Antagonistas de Insulina/química , Antagonistas de Insulina/uso terapéutico , Péptidos/química , Isoformas de Proteínas/química , Proteolisis/efectos de los fármacos , Receptor de Insulina/genética , Transducción de Señal/efectos de los fármacos
9.
J Pept Sci ; 24(1)2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29322647

RESUMEN

This review presents the scope of research presented in an October 2016 lecture pertaining to the award of the 2015 Max Bergmann Medal. The advancement in synthetic and biosynthetic chemistry as applied to the discovery of novel macromolecular drug candidates is reviewed. The evolution of the technology from the design, synthesis, and development of the first biosynthetic peptides through the emergence of peptide-based incretin agonists that function by multiple biological mechanisms is exemplified by the progression of such peptides from preclinical to clinical study. A closing section highlights recent progress made in total chemical synthesis of insulin and related peptides.


Asunto(s)
Química Farmacéutica , Enfermedades Metabólicas/tratamiento farmacológico , Péptidos/uso terapéutico , Diseño de Fármacos , Humanos , Sustancias Macromoleculares/síntesis química , Sustancias Macromoleculares/química , Sustancias Macromoleculares/uso terapéutico , Péptidos/síntesis química , Péptidos/química
10.
J Pept Sci ; 23(6): 455-465, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28466571

RESUMEN

This report presents an entirely chemical, general strategy for the synthesis of relaxin-2 and insulin-like peptide 5. Historically, these two peptides have represented two of the more synthetically challenging members of the insulin superfamily. The key synthetic steps involve two sequential oxime ligations to covalently link the individual A-chain and B-chain, followed by disulfide bond formation under aqueous, redox conditions. This is followed by two chemical reactions that employ diketopiperazine cyclization-mediated cleavage and ester hydrolysis to liberate the connecting peptide and the heterodimeric product. This approach avoids the conventional iodine-mediated disulfide bond formation and enzyme-assisted proteolysis to generate biologically active two-chain peptides. This novel synthetic strategy is ideally suited for peptides such as relaxin and insulin-like peptide 5 as they possess methionine and tryptophan that are labile under strong oxidative conditions. Additionally, these peptides possess multiple arginine and lysine residues that preclude the use of trypsin-like enzymes to obtain biologically active hormones. This synthetic methodology is conceivably applicable to other two-chain peptides that contain multiple disulfide bonds. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.


Asunto(s)
Insulina/síntesis química , Proteínas/síntesis química , Relaxina/síntesis química , Humanos , Insulina/química , Conformación Molecular , Proteínas/química , Relaxina/química
11.
J Org Chem ; 82(7): 3506-3512, 2017 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-28319665

RESUMEN

Naturally occurring, multiple cysteine-containing peptides are a structurally unique class of compounds with a wide range of therapeutic and diagnostic applications. The development of reliable, precise chemical methods for their preparation is of paramount importance to facilitate exploration of their utility. We report here a straightforward and effective approach based on stepwise, sequentially directed disulfide bond formation, exemplified by the synthesis of four-disulfide bond-containing insulin analogs. Cysteine protection consisted of tert-butylthiol (StBu), thiol-trimethoxyphenyl (STmp), trityl (Trt), 4-methoxytrityl (Mmt), S-acetamidomethyl (Acm), and tert-butyl (tBu). This report describes chemistry that is broadly applicable to cysteine-rich peptides and the influence of a fourth disulfide bond on insulin bioactivity.


Asunto(s)
Disulfuros/química , Insulina/síntesis química , Disulfuros/síntesis química , Humanos , Insulina/análogos & derivados , Insulina/química , Estructura Molecular
12.
J Pept Sci ; 21(3): 223-30, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25665061

RESUMEN

This report describes the chemical synthesis and biological characterization of novel three-chain insulin analogs with a destabilized secondary structure. The analogs, obtained by chemical synthesis via a single-chain precursor and selective enzymatic digestion, were used to investigate the role of the highly conserved 'insulin fold'. Biological characterization through in vitro biochemical signaling showed extremely low activity at each insulin receptor when compared with native insulin. We conclude that the 'insulin fold' is a structural foundation that supports insulin biological action.


Asunto(s)
Antígenos CD/metabolismo , Insulina/síntesis química , Insulina/metabolismo , Receptor de Insulina/metabolismo , Secuencia de Aminoácidos , Células HEK293 , Humanos , Insulina/análogos & derivados , Metaloendopeptidasas/química , Modelos Moleculares , Datos de Secuencia Molecular , Pliegue de Proteína , Estabilidad Proteica , Estructura Secundaria de Proteína , Transducción de Señal , Técnicas de Síntesis en Fase Sólida , Relación Estructura-Actividad , Tripsina/química
13.
ACS Chem Biol ; 9(3): 683-91, 2014 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-24328449

RESUMEN

Insulin remains a challenging synthetic target due in large part to its two-chain, disulfide-constrained structure. Biomimetic single chain precursors inspired by proinsulin that utilize short peptides to join the A and B chains can dramatically enhance folding efficiency. Systematic chemical analysis of insulin precursors using an optimized synthetic protocol identified a 49 amino acid peptide named DesDi, which folds with high efficiency by virtue of an optimized structure and could be proteolytically converted to bioactive two-chain insulin. In subsequent applications, we observed that the folding of the DesDi precursor was highly tolerant to amino acid substitution at various insulin residues. The versatility of DesDi as a synthetic insulin precursor was demonstrated through the preparation of several alanine mutants (A10, A16, A18, B12, B15), as well as ValA16, an analog that was unattainable in prior reports. In vitro bioanalysis highlighted the importance of the native, hydrophobic residues at A16 and B15 as part of the core structure of the hormone and revealed the significance of the A18 residue to receptor selectivity. We propose that the DesDi precursor is a versatile synthetic intermediate for the preparation of diverse insulin analogs. It should enable a more comprehensive analysis of function to insulin structure than might not be otherwise possible through conventional approaches.


Asunto(s)
Insulina/análogos & derivados , Insulina/síntesis química , Precursores de Proteínas/química , Alanina/química , Alanina/genética , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Células HEK293 , Humanos , Insulina/química , Insulina/genética , Factor I del Crecimiento Similar a la Insulina/genética , Modelos Moleculares , Datos de Secuencia Molecular , Péptidos/química , Proinsulina/química , Pliegue de Proteína , Precursores de Proteínas/genética , Replegamiento Proteico , Transfección
14.
Mol Metab ; 2(4): 468-79, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24327962

RESUMEN

Medicines that decrease body weight and restore nutrient tolerance could improve human diabetes and obesity treatment outcomes. We developed lipid-acylated glucagon analogs that are co-agonists for the glucagon and glucagon-like peptide 1 receptors, and stimulate weight loss and plasma glucose lowering in pre-diabetic obese mice. Our studies identified lipid acylation (lipidation) can increase and balance in vitro potencies of select glucagon analogs for the two aforementioned receptors in a lipidation site-dependent manner. A general capacity for lipidation to enhance the secondary structure of glucagon analogs was recognized, and the energetics of this effect quantified. The molecular structure of a lipid-acylated glucagon analog in water was also characterized. These results support that lipidation can modify biological activity through thermodynamically-favorable intramolecular interactions which stabilize structure. This establishes use of lipidation to achieve specific pharmacology and implicates similar endogenous post-translational modifications as physiological tools capable of refining biological action in means previously underappreciated.

15.
Mol Metab ; 2(2): 86-91, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24199154

RESUMEN

Structure-function studies have analyzed substitutions within the glucagon-like peptide-1 (GLP-1) sequence that increase resistance to proteolysis, however, the investigation into how such substitutions alter interactions at the GLP-1 receptor (GLP-1R) has captured less attention. This work describes our efforts at identifying relevant interactions between peptide ligands and the GLP-1R extracellular domain that contribute to the positioning of the peptide N-terminus for receptor activation. Alanine substitutions at hydrophilic (Glu127⁎ and Glu128⁎) and hydrophobic (Leu32⁎) GLP-1R residues were previously shown to differentially interact with GLP-1 and exendin-4. We examined if these receptor residues influence the activity of GLP-1- and exendin-4-based peptides containing either alanine or glycine at position 2. Additionally, a series of glucagon-based peptides were studied to determine how the central to C-terminal region affects activity. Our results suggest that peptide binding to the GLP-1R is largely driven by hydrophobic interactions with the extracellular domain that orient the N-terminus for activation.

16.
ACS Chem Biol ; 8(8): 1822-9, 2013 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-23730814

RESUMEN

A series of novel, single chain insulin analogs containing polyethylene glycol based connecting segments were synthesized by native chemical ligation and tested for biological activity. While the full length single chain insulin analogs exhibited low potency, deletion of amino acids B26-B30 unexpectedly generated markedly higher activity. This observation is unprecedented in all previous studies of single chain insulin analogs and is consistent with the presumption that in the native hormone this sequence must translocate to achieve high potency insulin receptor interaction. Optimization of the sequence yielded an insulin analog with potency and selectivity comparable to that of native insulin. These results establish a basis for discovery of novel higher potency, single chain insulin analogs of shortened length.


Asunto(s)
Disulfuros/química , Descubrimiento de Drogas , Insulina/análogos & derivados , Péptidos/química , Secuencia de Aminoácidos , Animales , Glucemia/metabolismo , Células Cultivadas , Secuencia Conservada , Humanos , Insulina/química , Insulina/farmacología , Factor I del Crecimiento Similar a la Insulina/química , Factor I del Crecimiento Similar a la Insulina/genética , Ratones , Ratones Endogámicos C57BL , Péptidos/genética , Péptidos/farmacología , Unión Proteica/efectos de los fármacos , Alineación de Secuencia
17.
J Pept Sci ; 17(10): 659-66, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21661079

RESUMEN

GLP-1 is an incretin peptide involved in the regulation of glucose metabolism and the glucose-dependent stimulation of insulin secretion. Ex-4 is a paralog of GLP-1 that has comparable GLP-1R potency but extended physiological action. GLP-1 and Ex-4 are helical peptides that share ∼50% sequence homology but differ at several residues, notably the second amino acid which controls susceptibility to DPP-IV cleavage. This single amino acid difference yields divergent receptor potency when studied in the context of the two hormone sequences. Ex-4 uniquely tolerates Gly2 through select amino acid differences in the middle region of the peptide that are absent in GLP-1. We report that substitution of Ex-4 amino acids Glu16, Leu21, and Glu24 to the GLP-1 sequence enabled Gly2 tolerance. The coordination of the N-terminus with these central residues shows an interaction of substantial importance not only to DPP-IV stability but also to receptor activation. Extension of this observation to glucagon-based co-agonist peptides showed different structural requirements for effective communication between the N-terminus and the mid-section of these peptides in achieving high potency agonism at the GLP-1 and GCGRs.


Asunto(s)
Péptido 1 Similar al Glucagón/química , Péptidos/química , Ponzoñas/química , Secuencia de Aminoácidos , Animales , Dipeptidil Peptidasa 4/metabolismo , Exenatida , Péptidos Similares al Glucagón/química , Humanos , Receptores de Glucagón/química , Homología de Secuencia de Aminoácido
18.
J Pept Sci ; 17(3): 218-25, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21308878

RESUMEN

Glucagon and glucagon-like peptide-1 (GLP-1)are two structurally related hormones that acutely regulate glucose control in opposite directions through homologous receptors. The molecular basis for selectivity between these two hormones and their receptors is of physiological and medicinal importance. The application of co-agonists to enhance body weight reduction and correct multiple abnormalities associated with the metabolic syndrome has recently been reported. Substitution of amino acids 16, 18, and 20 in glucagon with those found in GLP-1 and exendin-4 were identified as partial contributors to balanced, high potency receptor action. The amidation of the C-terminus was an additional glucagon-based structural change observed to be of seminal importance to discriminate recognition by both receptors. In this work, the molecular basis for receptor selectivity associated with differences in C-terminal peptide sequence has been determined. A single charge inversion in glucagon and GLP-1 receptor sequence at position 68* was determined to significantly alter hormone action. Changing E68* in GLP-1R to the corresponding Lys of GCGR reduced receptor activity for natural GLP-1 hormones by eightfold. The enhanced C-terminal positive charges in GLP-1 peptides favor the native receptor's negative charge at position 68*, while the unfavorable interaction with the C-terminal acid of native glucagon is minimized by amidation. The extension of these observations to other glucagon-related hormones such as oxyntomodulin and exendin, as well as other related receptors such as GIPR, should assist in the assembly of additional hormones with broadened pharmacology.


Asunto(s)
Glucagón/metabolismo , Receptores de Glucagón/metabolismo , Secuencia de Aminoácidos , Línea Celular , Glucagón/química , Glucagón/genética , Péptido 1 Similar al Glucagón/química , Péptido 1 Similar al Glucagón/genética , Péptido 1 Similar al Glucagón/metabolismo , Receptor del Péptido 1 Similar al Glucagón , Humanos , Datos de Secuencia Molecular , Mutación , Unión Proteica , Receptores de Glucagón/química , Receptores de Glucagón/genética
19.
ACS Chem Biol ; 6(2): 135-45, 2011 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-20939591

RESUMEN

Ex-4 (9-39)a is a well characterized GLP-1 receptor antagonist that suffers from two notable limitations, its nonhuman amino acid sequence and its relatively short in vivo duration of action. Comparable N-terminal shortening of human GLP-1 lessens agonism but does not provide a high potency antagonist. Through a series of GLP-1/Ex-4 hybrid peptides, the minimal structural changes required to generate a pure GLP-1-based antagonist were identified as Glu16, Val19, and Arg20, yielding an antagonist of approximately 3-fold greater in vitro potency compared with Ex-4 (9-39)a. The structural basis of antagonism appears to result from stabilization of the α helix combined with enhanced electrostatic and hydrophobic interactions with the extracellular domain of the receptor. Site-specific acylation of the human-based antagonist yielded a peptide of increased potency as a GLP-1 receptor antagonist and 10-fold greater selectivity relative to the GIP receptor. The acylated antagonist demonstrated sufficient duration of action to maintain inhibitory activity when administered as a daily subcutaneous injection. The sustained pharmacokinetics and enhanced human sequence combine to form an antagonist optimized for clinical study. Daily administration of this antagonist by subcutaneous injection to diet-induced obese mice for 1 week caused a significant increase in food intake, body weight, and glucose intolerance, demonstrating endogenous GLP-1 as a relevant hormone in mammalian energy balance in the obese state.


Asunto(s)
Péptido 1 Similar al Glucagón/metabolismo , Receptores de Glucagón/antagonistas & inhibidores , Acilación , Secuencia de Aminoácidos , Animales , Sitios de Unión , Peso Corporal/efectos de los fármacos , Grasas de la Dieta/administración & dosificación , Ingestión de Alimentos/efectos de los fármacos , Metabolismo Energético/efectos de los fármacos , Péptido 1 Similar al Glucagón/análogos & derivados , Péptido 1 Similar al Glucagón/química , Péptido 1 Similar al Glucagón/farmacocinética , Humanos , Ratones , Ratones Obesos , Datos de Secuencia Molecular , Obesidad/inducido químicamente , Obesidad/tratamiento farmacológico , Péptidos/química , Péptidos/metabolismo , Péptidos/farmacocinética , Receptores de Glucagón/agonistas , Receptores de Glucagón/metabolismo
20.
J Diabetes Sci Technol ; 4(6): 1322-31, 2010 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-21129326

RESUMEN

BACKGROUND: Glucagon is a life-saving medication used in the treatment of hypoglycemia. It possesses poor solubility in aqueous buffers at or near physiological pH values. At low and high pH, at which the peptide can be formulated to concentrations of a milligram or more per milliliter, the chemical integrity of the hormone is limited, as evidenced by the formation of multiple degradation-related peptides. Consequently, the commercial preparation is provided as a lyophilized solid with an acidic diluent and directions for rendering it soluble at the time of use. Any unused material is recommended for disposal immediately after initial use. METHODS: A set of glucagon analogs was prepared by solid-phase peptide synthesis to explore the identification of a glucagon analog with enhanced solubility and chemical stability at physiological pH. The physical properties of the peptide analogs were studied by solubility determination, high-performance chromatography, and mass spectral analysis. The biochemical properties were determined in engineered human embryonic kidney cell line 293 (HEK293) cells that overexpressed either the human glucagon or glucagon-like peptide-1 (GLP-1) receptors linked to a luciferase reporter gene. RESULTS: We observed the previously characterized formation of glucagon degradation products upon incubation of the peptide in dilute acid for extended periods or elevated temperature. Lowering the isoelectric point of the hormone through the substitution of asparagine-28 with aspartic acid significantly increased the solubility at physiological pH. Similarly, the C-terminal extension (Cex) of the hormone with an exendin-based, 10-residue, C-terminal sequence yielded a peptide of dramatically enhanced solubility. These two glucagon analogs, D28 and Cex, maintained high potency and selectivity for the glucagon receptor relative to GLP-1 receptor. CONCLUSIONS: Glucagon presents unique structural challenges to the identification of an analog of high biological activity and selectivity that also possesses sufficient aqueous solubility and stability such that it might be developed as a ready-to-use medicine. The glucagon analogs D28 and Cex demonstrated all of the chemical, physical, and biochemical properties supportive of further study as potential clinical candidates for treatment of hypoglycemia.


Asunto(s)
Glucagón/química , Secuencia de Aminoácidos , Asparagina , Ácido Aspártico , Línea Celular , Química Farmacéutica , Cromatografía Líquida de Alta Presión , AMP Cíclico/metabolismo , Estabilidad de Medicamentos , Genes Reporteros , Glucagón/análogos & derivados , Glucagón/síntesis química , Glucagón/farmacología , Receptor del Péptido 1 Similar al Glucagón , Humanos , Concentración de Iones de Hidrógeno , Hipoglucemia/tratamiento farmacológico , Punto Isoeléctrico , Datos de Secuencia Molecular , Receptores de Glucagón/efectos de los fármacos , Receptores de Glucagón/genética , Receptores de Glucagón/metabolismo , Solubilidad , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Temperatura , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...