Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Elife ; 102021 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-33942720

RESUMEN

Prokaryotes utilize polycistronic messages (operons) to co-translate proteins involved in the same biological processes. Whether eukaryotes achieve similar regulation by selectively assembling and translating monocistronic messages derived from different chromosomes is unknown. We employed transcript-specific RNA pulldowns and RNA-seq/RT-PCR to identify yeast mRNAs that co-precipitate as ribonucleoprotein (RNP) complexes. Consistent with the hypothesis of eukaryotic RNA operons, mRNAs encoding components of the mating pathway, heat shock proteins, and mitochondrial outer membrane proteins multiplex in trans, forming discrete messenger ribonucleoprotein (mRNP) complexes (called transperons). Chromatin capture and allele tagging experiments reveal that genes encoding multiplexed mRNAs physically interact; thus, RNA assembly may result from co-regulated gene expression. Transperon assembly and function depends upon histone H4, and its depletion leads to defects in RNA multiplexing, decreased pheromone responsiveness and mating, and increased heat shock sensitivity. We propose that intergenic associations and non-canonical histone H4 functions contribute to transperon formation in eukaryotic cells and regulate cell physiology.


Asunto(s)
Operón , ARN Mensajero/metabolismo , Ribonucleoproteínas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiología , Expresión Génica , Histonas/genética , Histonas/metabolismo , ARN Mensajero/genética , Ribonucleoproteínas/genética
2.
Proc Natl Acad Sci U S A ; 113(40): E5896-E5905, 2016 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-27651485

RESUMEN

In response to pheromones, yeast cells activate a MAPK pathway to direct processes important for mating, including gene induction, cell-cycle arrest, and polarized cell growth. Although a variety of assays have been able to elucidate signaling activities at multiple steps in the pathway, measurements of MAPK activity during the pheromone response have remained elusive, and our understanding of single-cell signaling behavior is incomplete. Using a yeast-optimized FRET-based mammalian Erk-activity reporter to monitor Fus3 and Kss1 activity in live yeast cells, we demonstrate that overall mating MAPK activity exhibits distinct temporal dynamics, rapid reversibility, and a graded dose dependence around the KD of the receptor, where phenotypic transitions occur. The complex dose response was found to be largely a consequence of two feedbacks involving cyclin-mediated scaffold phosphorylation and Fus3 autoregulation. Distinct cell cycle-dependent response patterns comprised a large portion of the cell-to-cell variability at each dose, constituting the major source of extrinsic noise in coupling activity to downstream gene-expression responses. Additionally, we found diverse spatial MAPK activity patterns to emerge over time in cells undergoing default, gradient, and true mating responses. Furthermore, ramping up and rapid loss of activity were closely associated with zygote formation in mating-cell pairs, supporting a role for elevated MAPK activity in successful cell fusion and morphogenic reorganization. Altogether, these findings present a detailed view of spatiotemporal MAPK activity during the pheromone response, elucidating its role in mediating complex long-term developmental fates in a unicellular differentiation system.


Asunto(s)
Diferenciación Celular , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/enzimología , Análisis de la Célula Individual/métodos , Ciclo Celular/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Fusión Celular , Polaridad Celular/efectos de los fármacos , Activación Enzimática/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Feromonas/farmacología , Fosforilación/efectos de los fármacos , Saccharomyces cerevisiae/efectos de los fármacos , Proteínas de Saccharomyces cerevisiae/metabolismo , Imagen de Lapso de Tiempo
3.
Cell Rep ; 1(5): 483-94, 2012 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-22832273

RESUMEN

mRNAs encoding polarity and secretion factors (POLs) target the incipient bud site in yeast for localized translation during division. In pheromone-treated cells we now find that these mRNAs are also localized to the yeast-mating projection (shmoo) tip. However, in contrast to the budding program, neither the She2 nor She3 proteins are involved. Instead, the Scp160 RNA-binding protein binds POL and mating pathway mRNAs and regulates their spatial distribution in a Myo4- and cortical ER-dependent fashion. RNA binding by Scp160 is stimulated by activation of Gpa1, the G protein α subunit regulated by the pheromone receptor, and is required for pheromone gradient sensing, as well as subsequent chemotropic growth and cell-cell mating. These effects are incurred independently of obvious changes in translation; thus, mRNA trafficking is required for chemotropism and completion of the mating program. This is, to our knowledge, the first demonstration of ligand-activated RNA targeting in the development of a simple eukaryote.


Asunto(s)
Quimiotaxis/fisiología , Feromonas/fisiología , ARN Mensajero/fisiología , Proteínas de Unión al ARN/fisiología , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/fisiología , Tropismo/fisiología , Proteínas Adaptadoras Transductoras de Señales/fisiología , División Celular/fisiología , Polaridad Celular/fisiología , Subunidades alfa de la Proteína de Unión al GTP/fisiología , Cadenas Pesadas de Miosina/fisiología , Miosina Tipo V/fisiología , Proteínas de Unión al ARN/genética , Proteínas de Saccharomyces cerevisiae/genética
4.
Proc Natl Acad Sci U S A ; 106(47): 19848-53, 2009 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-19903887

RESUMEN

Targeted mRNA trafficking and local translation may play a significant role in controlling protein localization. Here we examined for the first time the localization of all ( approximately 50) mRNAs encoding peroxisomal proteins (mPPs) involved in peroxisome biogenesis and function. By using the bacteriophage MS2-CP RNA-binding protein (RBP) fused to multiple copies of GFP, we demonstrated that >40 endogenously expressed mPPs tagged with the MS2 aptamer form fluorescent RNA granules in vivo. The use of different RFP-tagged organellar markers revealed 3 basic patterns of mPP granule localization: to peroxisomes, to the endoplasmic reticulum (ER), and nonperoxisomal. Twelve mPPs (i.e., PEX1, PEX5, PEX8, PEX11-15, DCI1, NPY1, PCS60, and POX1) had a high percentage (52%-80%) of mRNA colocalization with peroxisomes. Thirteen mPPs (i.e., AAT2, PEX6, MDH3, PEX28, etc.) showed a low percentage (30%-42%) of colocalization, and 1 mPP (PEX3) preferentially localized to the ER. The mPPs of the nonperoxisomal pattern (i.e., GPD1, PCD1, PEX7) showed <<30% colocalization. mPP association with the peroxisome or ER was verified using cell fractionation and RT-PCR analysis. A model mPP, PEX14 mRNA, was found to be in close association with peroxisomes throughout the cell cycle, with its localization depending in part on the 3'-UTR, initiation of translation, and the Puf5 RBP. The different patterns of mPP localization observed suggest that multiple mechanisms involved in mRNA localization and translation may play roles in the importation of protein into peroxisomes.


Asunto(s)
Peroxisomas , ARN Mensajero/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Ciclo Celular/fisiología , Retículo Endoplásmico/metabolismo , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Peroxinas , Peroxisomas/química , Peroxisomas/metabolismo , ARN Mensajero/genética , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
5.
Mol Biol Cell ; 19(9): 3625-37, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18562697

RESUMEN

Ddi1/Vsm1 is an ubiquitin receptor involved in regulation of the cell cycle and late secretory pathway in Saccharomyces cerevisiae. Ddi1 possesses three domains: an NH(2)-terminal ubiquitin-like domain (UBL), a COOH-terminal ubiquitin-associated domain (UBA), and a retroviral aspartyl-protease domain (RVP). Here, we demonstrate the domains involved in homodimerization, checkpoint regulation, localization, and t-SNARE binding. The RVP domain is required for protein homodimerization, whereas the UBL and UBA domains are required for rescue of the pds1-128 checkpoint mutant and enrichment of GFP-Ddi1 in the nucleus. A mutation in aspartate-220, which is necessary for putative aspartyl-protease function, abolished the rescue of pds1-128 cells but not homodimerization. Thus, Ddi1 catalytic activity may be required for checkpoint regulation. The Sso1 t-SNARE-interacting domain maps to residues 344-395 and undergoes phosphorylation on threonines T346 and T348. T348 is necessary for Sso binding, and phosphorylation is important for function, because mutations that lessen phosphorylation (e.g., Ddi1(T346A), Ddi1(T348A)) are unable to facilitate growth of the sec9-4 t-SNARE mutant. In contrast, the overproduction of phosphorylatable forms of Ddi1 (e.g., Ddi1, Ddi1(S341A)) rescue the growth of sec9-4 cells similar to Sso1 overproduction. Thus, Ddi1 participates in multiple cellular processes via its different domains and phosphorylation may regulate exocytic functions.


Asunto(s)
Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Dominio Catalítico , Dimerización , Epítopos/química , Exocitosis , Proteínas Fluorescentes Verdes/metabolismo , Microscopía Fluorescente/métodos , Modelos Biológicos , Mutación , Fosforilación , Estructura Terciaria de Proteína , Retroviridae/metabolismo , Proteínas SNARE/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiología , Ubiquitina/química
6.
Mol Cell Biol ; 27(9): 3441-55, 2007 May.
Artículo en Inglés | MEDLINE | ID: mdl-17339339

RESUMEN

Polarized growth in the budding yeast Saccharomyces cerevisiae depends upon the asymmetric localization and enrichment of polarity and secretion factors at the membrane prior to budding. We examined how these factors (i.e., Cdc42, Sec4, and Sro7) reach the bud site and found that their respective mRNAs localize to the tip of the incipient bud prior to nuclear division. Asymmetric mRNA localization depends upon factors that facilitate ASH1 mRNA localization (e.g., the 3' untranslated region, She proteins 1 to 5, Puf6, actin cytoskeleton, and a physical association with She2). mRNA placement precedes protein enrichment and subsequent bud emergence, implying that mRNA localization contributes to polarization. Correspondingly, mRNAs encoding proteins which are not asymmetrically distributed (i.e., Snc1, Mso1, Tub1, Pex3, and Oxa1) are not polarized. Finally, mutations which affect cortical endoplasmic reticulum (ER) entry and anchoring in the bud (myo4Delta, sec3Delta, and srp101) also affect asymmetric mRNA localization. Bud-localized mRNAs, including ASH1, were found to cofractionate with ER microsomes in a She2- and Sec3-dependent manner; thus, asymmetric mRNA transport and cortical ER inheritance are connected processes in yeast.


Asunto(s)
División Celular , Polaridad Celular/genética , Retículo Endoplásmico/metabolismo , Exocitosis/genética , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Proteínas Adaptadoras Transductoras de Señales , Transporte Biológico , Proteínas Portadoras/genética , Núcleo Celular/genética , Citoesqueleto/genética , Citoesqueleto/metabolismo , Proteínas de Unión al ADN/genética , Complejo IV de Transporte de Electrones/genética , Proteínas de la Membrana/genética , Proteínas Mitocondriales/genética , Cadenas Pesadas de Miosina/genética , Miosina Tipo V/genética , Proteínas Nucleares/genética , Peroxinas , Unión Proteica , Proteínas R-SNARE/genética , ARN Mensajero/genética , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Proteínas Represoras/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteína de Unión al GTP cdc42 de Saccharomyces cerevisiae/genética , Proteínas de Unión al GTP rab/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA