Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cancer Immunol Immunother ; 70(4): 1143-1153, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33048222

RESUMEN

Following infusion of the anti-CD28 superagonist monoclonal antibody TGN1412, three of six previously healthy, young male recipients developed gastrointestinal irritability associated with increased expression of 'gut-homing' integrin ß7 on peripheral blood αßT cells. This subset of patients with intestinal symptoms also displayed a striking and persistent expansion of putative Vδ2+ γδT cells in the circulation which declined over a 2-year period following drug infusion, concordant with subsiding gut symptoms. These data demonstrate that TGN1412-induced gastrointestinal symptoms were associated with dysregulation of the 'gut-homing' pool of blood αß and γδT cells, induced directly by the antibody and/or arising from the subsequent cytokine storm.


Asunto(s)
Anticuerpos Monoclonales Humanizados/efectos adversos , Antígenos CD28/inmunología , Síndrome de Liberación de Citoquinas/inmunología , Enfermedades Gastrointestinales/inmunología , Leucocitos Mononucleares/inmunología , Receptores de Antígenos de Linfocitos T alfa-beta/inmunología , Receptores de Antígenos de Linfocitos T gamma-delta/inmunología , Adulto , Síndrome de Liberación de Citoquinas/inducido químicamente , Citocinas/metabolismo , Enfermedades Gastrointestinales/inducido químicamente , Humanos , Masculino , Adulto Joven
2.
Regul Toxicol Pharmacol ; 113: 104624, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32126256

RESUMEN

An international expert working group representing 37 organisations (pharmaceutical/biotechnology companies, contract research organisations, academic institutions and regulatory bodies) collaborated in a data sharing exercise to evaluate the utility of two species within regulatory general toxicology studies. Anonymised data on 172 drug candidates (92 small molecules, 46 monoclonal antibodies, 15 recombinant proteins, 13 synthetic peptides and 6 antibody-drug conjugates) were submitted by 18 organisations. The use of one or two species across molecule types, the frequency for reduction to a single species within the package of general toxicology studies, and a comparison of target organ toxicities identified in each species in both short and longer-term studies were determined. Reduction to a single species for longer-term toxicity studies, as used for the development of biologicals (ICHS6(R1) guideline) was only applied for 8/133 drug candidates, but might have been possible for more, regardless of drug modality, as similar target organ toxicity profiles were identified in the short-term studies. However, definition and harmonisation around the criteria for similarity of toxicity profiles is needed to enable wider consideration of these principles. Analysis of a more robust dataset would be required to provide clear, evidence-based recommendations for expansion of these principles to small molecules or other modalities where two species toxicity testing is currently recommended.


Asunto(s)
Desarrollo de Medicamentos , Evaluación Preclínica de Medicamentos/efectos adversos , Pruebas de Toxicidad , Animales , Bases de Datos Factuales , Humanos , Medición de Riesgo
3.
Regul Toxicol Pharmacol ; 107: 104403, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31195068

RESUMEN

In silico toxicology (IST) approaches to rapidly assess chemical hazard, and usage of such methods is increasing in all applications but especially for regulatory submissions, such as for assessing chemicals under REACH as well as the ICH M7 guideline for drug impurities. There are a number of obstacles to performing an IST assessment, including uncertainty in how such an assessment and associated expert review should be performed or what is fit for purpose, as well as a lack of confidence that the results will be accepted by colleagues, collaborators and regulatory authorities. To address this, a project to develop a series of IST protocols for different hazard endpoints has been initiated and this paper describes the genetic toxicity in silico (GIST) protocol. The protocol outlines a hazard assessment framework including key effects/mechanisms and their relationships to endpoints such as gene mutation and clastogenicity. IST models and data are reviewed that support the assessment of these effects/mechanisms along with defined approaches for combining the information and evaluating the confidence in the assessment. This protocol has been developed through a consortium of toxicologists, computational scientists, and regulatory scientists across several industries to support the implementation and acceptance of in silico approaches.


Asunto(s)
Modelos Teóricos , Mutágenos/toxicidad , Proyectos de Investigación , Toxicología/métodos , Animales , Simulación por Computador , Humanos , Pruebas de Mutagenicidad , Medición de Riesgo
4.
Regul Toxicol Pharmacol ; 96: 1-17, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29678766

RESUMEN

The present publication surveys several applications of in silico (i.e., computational) toxicology approaches across different industries and institutions. It highlights the need to develop standardized protocols when conducting toxicity-related predictions. This contribution articulates the information needed for protocols to support in silico predictions for major toxicological endpoints of concern (e.g., genetic toxicity, carcinogenicity, acute toxicity, reproductive toxicity, developmental toxicity) across several industries and regulatory bodies. Such novel in silico toxicology (IST) protocols, when fully developed and implemented, will ensure in silico toxicological assessments are performed and evaluated in a consistent, reproducible, and well-documented manner across industries and regulatory bodies to support wider uptake and acceptance of the approaches. The development of IST protocols is an initiative developed through a collaboration among an international consortium to reflect the state-of-the-art in in silico toxicology for hazard identification and characterization. A general outline for describing the development of such protocols is included and it is based on in silico predictions and/or available experimental data for a defined series of relevant toxicological effects or mechanisms. The publication presents a novel approach for determining the reliability of in silico predictions alongside experimental data. In addition, we discuss how to determine the level of confidence in the assessment based on the relevance and reliability of the information.


Asunto(s)
Simulación por Computador , Pruebas de Toxicidad/métodos , Toxicología/métodos , Animales , Humanos
5.
Arch Toxicol ; 92(4): 1657-1661, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29549413

RESUMEN

The advent of adverse outcome pathways (AOPs) has provided a new lexicon for description of mechanistic toxicology, and a renewed enthusiasm for exploring modes of action resulting in adverse health and environmental effects. In addition, AOPs have been used successfully as a framework for the design and development of non-animal approaches to toxicity testing. Although the value of AOPs is widely recognised, there remain challenges and opportunities associated with their use in practise. The purpose of this article is to consider specifically how the future trajectory of AOPs may provide a basis for addressing some of those challenges and opportunities.


Asunto(s)
Rutas de Resultados Adversos , Alternativas a las Pruebas en Animales , Pruebas de Toxicidad , Animales , Humanos , Medición de Riesgo
6.
Crit Rev Toxicol ; 48(5): 359-374, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29474122

RESUMEN

Skin sensitization is a toxicity endpoint of widespread concern, for which the mechanistic understanding and concurrent necessity for non-animal testing approaches have evolved to a critical juncture, with many available options for predicting sensitization without using animals. Cosmetics Europe and the National Toxicology Program Interagency Center for the Evaluation of Alternative Toxicological Methods collaborated to analyze the performance of multiple non-animal data integration approaches for the skin sensitization safety assessment of cosmetics ingredients. The Cosmetics Europe Skin Tolerance Task Force (STTF) collected and generated data on 128 substances in multiple in vitro and in chemico skin sensitization assays selected based on a systematic assessment by the STTF. These assays, together with certain in silico predictions, are key components of various non-animal testing strategies that have been submitted to the Organization for Economic Cooperation and Development as case studies for skin sensitization. Curated murine local lymph node assay (LLNA) and human skin sensitization data were used to evaluate the performance of six defined approaches, comprising eight non-animal testing strategies, for both hazard and potency characterization. Defined approaches examined included consensus methods, artificial neural networks, support vector machine models, Bayesian networks, and decision trees, most of which were reproduced using open source software tools. Multiple non-animal testing strategies incorporating in vitro, in chemico, and in silico inputs demonstrated equivalent or superior performance to the LLNA when compared to both animal and human data for skin sensitization.


Asunto(s)
Alternativas a las Pruebas en Animales/métodos , Biología Computacional/métodos , Simulación por Computador , Cosméticos/efectos adversos , Dermatitis Alérgica por Contacto/inmunología , Piel/inmunología , Animales , Cosméticos/farmacología , Dermatitis Alérgica por Contacto/etiología , Humanos , Ratones , Piel/efectos de los fármacos
7.
Crit Rev Toxicol ; 48(5): 344-358, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29474128

RESUMEN

Cosmetics Europe, the European Trade Association for the cosmetics and personal care industry, is conducting a multi-phase program to develop regulatory accepted, animal-free testing strategies enabling the cosmetics industry to conduct safety assessments. Based on a systematic evaluation of test methods for skin sensitization, five non-animal test methods (DPRA (Direct Peptide Reactivity Assay), KeratinoSensTM, h-CLAT (human cell line activation test), U-SENSTM, SENS-IS) were selected for inclusion in a comprehensive database of 128 substances. Existing data were compiled and completed with newly generated data, the latter amounting to one-third of all data. The database was complemented with human and local lymph node assay (LLNA) reference data, physicochemical properties and use categories, and thoroughly curated. Focused on the availability of human data, the substance selection resulted nevertheless resulted in a high diversity of chemistries in terms of physico-chemical property ranges and use categories. Predictivities of skin sensitization potential and potency, where applicable, were calculated for the LLNA as compared to human data and for the individual test methods compared to both human and LLNA reference data. In addition, various aspects of applicability of the test methods were analyzed. Due to its high level of curation, comprehensiveness, and completeness, we propose our database as a point of reference for the evaluation and development of testing strategies, as done for example in the associated work of Kleinstreuer et al. We encourage the community to use it to meet the challenge of conducting skin sensitization safety assessment without generating new animal data.


Asunto(s)
Cosméticos/efectos adversos , Bases de Datos Factuales , Dermatitis Alérgica por Contacto/inmunología , Piel/inmunología , Alternativas a las Pruebas en Animales/métodos , Cosméticos/farmacología , Dermatitis Alérgica por Contacto/etiología , Humanos , Piel/efectos de los fármacos
8.
ALTEX ; 35(2): 179-192, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-28968481

RESUMEN

Significant progress has been made in the development and validation of non-animal test methods for skin sensitization assessment. At present, three of the four key events of the Adverse Outcome Pathway (AOP) are assessable by OECD-accepted in vitro methods. The fourth key event describes the immunological response in the draining lymph node where activated dendritic cells present major histocompatibility complex-bound chemically modified peptides to naive T cells, thereby priming the proliferation of antigen-specific T cells. Despite substantial efforts, modelling and assessing this adaptive immune response to sensitizers with in vitro T cell assays still represents a challenge. The Cosmetics Europe Skin Tolerance Task Force organized a workshop, bringing together academic researchers, method developers, industry representatives and regulatory stakeholders to review the scientific status of T cell-based assays, foster a mutual scientific understanding and conceive new options to assess T cell activation. Participants agreed that current T cell assays have come a long way in predicting immunogenicity, but that further investment and collaboration is required to simplify assays, optimize their sensitivity, better define human donor-to-donor variability and evaluate their value to predict sensitizer potency. Furthermore, the potential role of T cell assays in AOP-based testing strategies and subsequent safety assessment concepts for cosmetic ingredients was discussed. It was agreed that it is currently difficult to anticipate uses of T cell assay data for safety assessment and concluded that experience from case studies on real-life risk assessment scenarios is needed to further consider the usefulness of assessing the fourth AOP key event.


Asunto(s)
Alérgenos/análisis , Bioensayo , Cosméticos/análisis , Activación de Linfocitos/efectos de los fármacos , Linfocitos T , Rutas de Resultados Adversos , Seguridad de Productos para el Consumidor , Humanos , Técnicas In Vitro/métodos , Técnicas In Vitro/normas , Piel/efectos de los fármacos , Pruebas Cutáneas/normas , Pruebas Cutáneas/tendencias
9.
Toxicology ; 389: 109-117, 2017 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-28774667

RESUMEN

For the purposes of chemical safety assessment, the value of using non-animal (in silico and in vitro) approaches and generating mechanistic information on toxic effects is being increasingly recognised. For sectors where in vivo toxicity tests continue to be a regulatory requirement, there has been a parallel focus on how to refine studies (i.e. reduce suffering and improve animal welfare) and increase the value that in vivo data adds to the safety assessment process, as well as where to reduce animal numbers where possible. A key element necessary to ensure the transition towards successfully utilising both non-animal and refined safety testing is the better understanding of chemical exposure. This includes approaches such as measuring chemical concentrations within cell-based assays and during in vivo studies, understanding how predicted human exposures relate to levels tested, and using existing information on human exposures to aid in toxicity study design. Such approaches promise to increase the human relevance of safety assessment, and shift the focus from hazard-driven to risk-driven strategies similar to those used in the pharmaceutical sectors. Human exposure-based safety assessment offers scientific and 3Rs benefits across all sectors marketing chemical or medicinal products. The UK's National Centre for the Replacement, Refinement and Reduction of Animals in Research (NC3Rs) convened an expert working group of scientists across the agrochemical, industrial chemical and pharmaceutical industries plus a contract research organisation (CRO) to discuss the current status of the utilisation of exposure-driven approaches, and the challenges and potential next steps for wider uptake and acceptance. This paper summarises these discussions, highlights the challenges - particularly those identified by industry - and proposes initial steps for moving the field forward.


Asunto(s)
Alternativas a las Pruebas en Animales , Exposición a Riesgos Ambientales/efectos adversos , Modelos Animales , Modelos Biológicos , Pruebas de Toxicidad/métodos , Toxicocinética , Animales , Simulación por Computador , Humanos , Reproducibilidad de los Resultados , Medición de Riesgo , Factores de Riesgo
11.
Regul Toxicol Pharmacol ; 89: 50-56, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28689746

RESUMEN

The current animal-based paradigm for safety assessment must change. In September 2016, the UK National Centre for Replacement, Refinement and Reduction of Animals in Research (NC3Rs) brought together scientists from regulatory authorities, academia and industry to review progress in bringing new methodology into regulatory use, and to identify ways to expedite progress. Progress has been slow. Science is advancing to make this possible but changes are necessary. The new paradigm should allow new methodology to be adopted once it is developed rather than being based on a fixed set of studies. Regulatory authorities can help by developing Performance-Based Standards. The most pressing need is in repeat dose toxicology, although setting standards will be more complex than in areas such as sensitization. Performance standards should be aimed directly at human safety, not at reproducing the results of animal studies. Regulatory authorities can also aid progress towards the acceptance of non-animal based methodology by promoting "safe-haven" trials where traditional and new methodology data can be submitted in parallel to build up experience in the new methods. Industry can play its part in the acceptance of new methodology, by contributing to the setting of performance standards and by actively contributing to "safe-haven" trials.


Asunto(s)
Alternativas a las Pruebas en Animales/métodos , Pruebas de Toxicidad/métodos , Alternativas a las Pruebas en Animales/normas , Animales , Animales de Laboratorio , Humanos , Pruebas de Toxicidad/normas , Reino Unido
12.
Front Immunol ; 8: 162, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28261218

RESUMEN

Paraphenylenediamine (PPD) is a common component of hair dyes and black henna tattoos and can cause skin sensitization and allergic contact dermatitis (ACD). The cutaneous inflammatory reaction associated with ACD is driven by both CD4+ and CD8+ T cells. However, the characteristics of such responses with respect to clonal breadth and magnitude are poorly defined. In this study, we have characterized the in vitro recall response of peripheral blood T cells prepared from PPD-allergic individuals to a PPD-human serum albumin (HSA) conjugate (PPD-HSA). Quantitative high throughput sequencing was used to characterize the changes in the repertoire of T cell receptor (TCR) α and ß genes after exposure to antigen in vitro. The PPD conjugate induced expansion of T cells carrying selected TCRs, with around 800 sequences (around 1%) being 8 or more times as abundant after culture than before. The expanded sequences showed strong skewing of V and J usage, consistent with an antigen-driven clonal expansion. The complementarity-determining region 3 sequences of the expanded TCRs could be grouped into several families of related amino acid sequence, but the overall diversity of the expanded sample was not much less than that of a random sample of the same size. The results suggest a model in which PPD-HSA conjugate stimulates a broad diversity of TCRs, with a wide range of stimulation strengths, which manifest as different degrees of in vitro expansion.

13.
Contact Dermatitis ; 75(1): 1-13, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27145152

RESUMEN

BACKGROUND: Methylisothiazolinone (MI), a preservative that is commonly used in personal care products, is now recognized as an important contact allergen in both cosmetic and occupational settings. OBJECTIVES: To analyse T lymphocyte responses to MI, in order to provide important information regarding the relationship between the nature of such responses and skin sensitization potency. METHODS: Proliferative responses to free MI and to an MI-human serum albumin (HSA) conjugate were measured according to [(3) H]thymidine incorporation (n = 56 donors; patch test scores of + in 20, ++ in 29, and +++ in 7). Peripheral blood mononuclear cells were cultured in the presence of MI (0.001-1 µg/ml) or MI-HSA (0.001-100 µg/ml). Proliferating CD4(+) and CD8(+) T lymphocytes were identified by flow cytometry with the intracellular marker Ki-67. RESULTS: For free MI, modest positive responses were recorded for 7 of 31 donors. In contrast, MI-HSA stimulated more marked responses in 17 of 31 donors. Characterization of positive proliferative responses showed variable patterns of proliferating CD4(+) and CD8(+) T lymphocytes from donors with the same patch test scores and similar maximal values. CONCLUSIONS: MI-HSA is able to induce secondary responses in lymphocytes drawn from sensitized subjects, and provides a more effective source of antigen than free MI. Furthermore, individual donors show differential activity profiles with respect to T lymphocyte subsets.


Asunto(s)
Linfocitos T CD4-Positivos/efectos de los fármacos , Linfocitos T CD8-positivos/efectos de los fármacos , Proliferación Celular , Leucocitos Mononucleares/efectos de los fármacos , Conservadores Farmacéuticos/farmacología , Tiazoles/farmacología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Estudios de Casos y Controles , Dermatitis Alérgica por Contacto/etiología , Dermatitis Alérgica por Contacto/inmunología , Citometría de Flujo , Humanos , Antígeno Ki-67 , Leucocitos Mononucleares/inmunología , Conservadores Farmacéuticos/efectos adversos , Linfocitos T/efectos de los fármacos , Linfocitos T/inmunología , Tiazoles/efectos adversos , Timidina , Tritio
14.
Contact Dermatitis ; 74(4): 197-204, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26560413

RESUMEN

Whereas T lymphocyte (T cell) activation is the key event in the acquisition of skin sensitization and subsequent elicitation of allergic contact dermatitis, the humoral component of immune responses to organic contact allergens has received little consideration. There is evidence that, in experimental animals, topical exposure to potent contact allergens is associated with B cell activation and proliferation, and hapten-specific antibody production. However, there is very limited evidence available for anti-hapten antibody responses being induced following topical exposure of humans to contact allergens. Nevertheless, it is important to appreciate that there are almost no negative studies in which evidence for antibody production as the result of skin sensitization has been sought and not found. That is, there is absence of evidence rather than evidence of absence. Furthermore, exposure to chemical respiratory allergens, in which the skin has been implicated as a potential route of sensitization, results in anti-hapten antibody responses. It is proposed that skin sensitization to contact allergens will normally be accompanied by antibody production. The phenomenon is worthy of investigation, as anti-hapten antibodies could potentially influence and/or regulate the induction of skin sensitization. Moreover, such antibodies may provide an informative correlate of the extent to which sensitization has been acquired.


Asunto(s)
Alérgenos/inmunología , Anticuerpos/inmunología , Linfocitos B/inmunología , Dermatitis Alérgica por Contacto/inmunología , Haptenos/inmunología , Inmunidad Humoral/inmunología , Piel/inmunología , Animales , Humanos , Inmunización , Activación de Linfocitos/inmunología
15.
J Immunotoxicol ; 13(1): 84-91, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-25655136

RESUMEN

Allergic contact dermatitis (ACD) is driven by the activation and proliferation of allergen-specific memory T-lymphocytes and is currently diagnosed by patch testing with a selected panel of chemical allergens. The lymphocyte transformation test (LTT) can be used to monitor ex vivo T-lymphocyte responses to antigens, including contact allergens. The LTT is not viewed as being an alternative to patch testing, but it does seek to reflect experimentally skin sensitization to specific chemicals. The LTT is based on stimulation in vitro of antigen-driven T-lymphocyte proliferation. That is, exposure in culture of primed memory T-lymphocytes to the relevant antigen delivered in an appropriate configuration will provoke a secondary response that reflects the acquisition of skin sensitization. The technical aspects of this test and the utility of the approach for investigation of immune responses to contact allergens in humans are reviewed here, with particular emphasis on further development and refinement of the protocol. An important potential application is that it may provide a basis for characterizing those aspects of T-lymphocyte responses to contact allergens that have the greatest influence on skin sensitizing potency and this will be considered in some detail.


Asunto(s)
Dermatitis Alérgica por Contacto/diagnóstico , Pruebas Inmunológicas/métodos , Linfocitos T/inmunología , Alérgenos/inmunología , Animales , Dermatitis Alérgica por Contacto/inmunología , Humanos , Memoria Inmunológica , Activación de Linfocitos , Pruebas del Parche
16.
Toxicol In Vitro ; 28(1): 8-12, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24184331

RESUMEN

As documented in the recent OECD report 'the adverse outcome pathway for skin sensitisation initiated by covalent binding to proteins' (OECD, 2012), the chemical and biological events driving the induction of human skin sensitisation have been investigated for many years and are now well understood. Several non-animal test methods have been developed to predict sensitiser potential by measuring the impact of chemical sensitisers on these key events (Adler et al., 2011; Maxwell et al., 2011); however our ability to use these non-animal datasets for risk assessment decision-making (i.e. to establish a safe level of human exposure for a sensitising chemical) remains limited and a more mechanistic approach to data integration is required to address this challenge. Informed by our previous efforts to model the induction of skin sensitisation (Maxwell and MacKay, 2008) we are now developing two mathematical models ('total haptenated protein' model and 'CD8(+) T cell response' model) that will be linked to provide predictions of the human CD8(+) T cell response for a defined skin exposure to a sensitising chemical. Mathematical model development is underpinned by focussed clinical or human-relevant research activities designed to inform/challenge model predictions whilst also increasing our fundamental understanding of human skin sensitisation. With this approach, we aim to quantify the relationship between the dose of sensitiser applied to the skin and the extent of the hapten-specific T cell response that would result. Furthermore, by benchmarking our mathematical model predictions against clinical datasets (e.g. human diagnostic patch test data), instead of animal test data, we propose that this approach could represent a new paradigm for mechanistic toxicology.


Asunto(s)
Modelos Teóricos , Medición de Riesgo/métodos , Pruebas de Toxicidad/métodos , Alternativas a las Pruebas en Animales , Animales , Benchmarking , Linfocitos T CD8-positivos/inmunología , Dermatitis Alérgica por Contacto/etiología , Humanos , Unión Proteica , Piel/inmunología , Linfocitos T/inmunología , Toxicología/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...