Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Arch Biochem Biophys ; 743: 109675, 2023 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-37343813

RESUMEN

LinB and DhaA are well-known haloalkane dehalogenases (HLDs) capable of converting a plethora of halogenated alkanes, also those considered persistent pollutants. The dehalogenation reaction that these two enzymes catalyze has been studied to determine its rate-limiting step (rls) for the last two decades now. As a result, it has been determined that HLDs can show different rate-limiting steps for individual substrates, and at this point we do not have a basis for any generalization in this matter. Therefore, in this work we aimed at gaining insights into the enzymatic dehalogenation of selected dibromo- and bromochloro-ethanes and propanes by LinB and DhaA using computational approach to determine whether defined structural similarities of the substrates result in a unified mechanism and the same rls. By predicting halogen binding isotope effects (BIEs) as well as computing interaction energy for each HLD-ligand complex the nature of the protein-ligand interactions has been characterized. Furthermore, C and Br kinetic isotope effects (KIEs) as well as the minimum free energy paths (MFEPs) were computed to investigate the chemical reaction for the selected systems. Accuracy of the approach and robustness of the computational predictions were validated by measuring KIEs on the selected reactions. Overall results strongly indicate that any generalization with respect to the enzymatic process involving various ligands in the case of DhaA is impossible, even if the considered ligands are structurally very similar as those analyzed in the present study. Moreover, even small structural differences such as changing of one of the (non-leaving) halogen substituents may lead to significant changes in the enzymatic process and result in a different rls in the case of LinB. It has also been demonstrated that KIEs themselves cannot be used as rls indicators in the reactions catalyzed by the studied HLDs.


Asunto(s)
Alcanos , Hidrolasas , Ligandos , Hidrolasas/química , Halógenos/química
2.
Microorganisms ; 10(11)2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36422337

RESUMEN

A crude oil spill in 2014 resulted in extensive soil contamination of the hyper arid Evrona Nature Reserve in Israel's Negev Desert. The contaminated soils became highly hydrophobic, threatening the existence of plants in the habitat. We hypothesized that bioaugmenting the soil with indigenous biosurfactant-producing, hydrocarbon-degrading bacteria (HDB) would accelerate the reduction in the soil's hydrophobicity. We aimed to isolate and characterize biosurfactant-producing HDBs from the desert-contaminated soil and test if they can be used for augmenting the soil. Twelve hydrocarbon-degrading strains were isolated, identified as Pseudomonas, and classified as biosurfactants "producing" and "nonproducing". Inoculating 109 CFU/g of "producing" strains into the polluted soil resulted in a 99.2% reduction in soil hydrophobicity within seven days. At the same time, nonproducing strains reduced hydrophobicity by only 17%, while no change was observed in the untreated control. The microbial community in the inoculated soil was dominated by the introduced strains over 28 days, pointing to their persistence. Rhamnolipid biosynthesis gene rhlAB remained persistent in soil inoculated with biosurfactants, indicating in situ production. We propose that the success of the treatment is due to the use of inoculum enriched from the polluted soil.

3.
Rapid Commun Mass Spectrom ; 36(21): e9378, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-35975721

RESUMEN

RATIONALE: The recent development of reliable GC/qMS methods for δ37 Cl compound-specific stable isotope analysis (CSIA) paves the way for dual carbon-chlorine isotope analysis of chlorinated ethenes and thus allows deeper insights into underlying transformation processes/mechanisms. A two-point calibration is indispensable for the precise and correct conversion of raw data to the international δ37 ClSMOC scale. The currently available calibration standards for tetrachloroethylene (PCE) span only a very narrow range from -2.52‰ (EIL2) to +0.29‰ (EIL1), which is considerably smaller than observed δ37 Cl isotope enrichment in (bio-)transformation studies (up to 12‰). METHODS: We describe the preparation and evaluation of a new 37 Cl-enriched PCE standard to avoid bias in δ37 Cl CSIA arising from extrapolation beyond the calibration range. The preparation comprised: (i) partial PCE reduction by zero-valent zinc in a system of PCE, ethanol (initial volume ratio 3/5) and trace amounts of water followed by (ii) liquid-liquid extraction and (iii) a subsequent fractional distillation to purify the 37 Cl-enriched PCE. RESULTS: The obtained PCE (PCEenriched ) showed a purity of 98.8% (mole fraction) and a δ37 ClSMOC value of +10.8 ± 0.5‰. The evaluation of an experimental dataset with and without extrapolation showed no significant variation. CONCLUSIONS: The new PCE standard (PCEenriched ) expands the calibration range to 13.3‰ (previously 2.8‰) and thus prevents potential bias introduced by extrapolation beyond the calibration range.


Asunto(s)
Tetracloroetileno , Calibración , Isótopos de Carbono/análisis , Cloro/análisis , Etanol , Tetracloroetileno/análisis , Agua , Zinc
4.
Anal Chem ; 92(21): 14685-14692, 2020 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-33095571

RESUMEN

Compound-specific isotope analysis of sulfur (δ34S-CSIA) in organic compounds was established in the last decade employing gas chromatography connected to multiple-collector inductively coupled plasma mass spectrometry (GC-MC-ICPMS). However, δ33S-CSIA has not yet been reported so far. In this study, we present a method for the simultaneous determination of δ33S and δ34S in organic compounds by GC-MC-ICPMS applying medium- and also low-mass-resolution modes. The method was validated using the international isotope reference materials IAEA-S-1, IAEA-S-2, and IAEA-S-3. Overall analytical uncertainty including normalization and reproducibility for δ33S and δ34S was usually better than ±0.2 mUr (σ) for analytes containing at least 100 pmol of S. Further, it is demonstrated that, despite small isobaric interferences, results obtained at low mass resolution are indistinguishable from medium mass resolution offering the benefit of increased sensitivity and versatility of this method. Additionally, the method was applied for the δ33S and δ34S isotope analysis of industrially produced organic compounds to investigate potential mass-independent fractionation (MIF). The relation between δ34S and δ33S in these compounds followed a mass-dependent fractionation trend (MDF; Δ33S ≤ ±0.2 mUr). Degradation of dimethyl disulfide by direct photolysis caused a small but significant MIF (Δ33S = 0.55 ± 0.04 mUr, n = 3), demonstrating sufficient sensitivity of the method for these types of studies.

5.
Chemosphere ; 258: 127378, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32554023

RESUMEN

Light driven degradation is very promising for pollutants remediation. In the present work, photochemical reaction of tetrabromobisphenol A (TBBPA) under LED white light (λ > 400 nm) irradiation system was investigated to figure out the TBBPA photochemical degradation pathways and isotope fractionation patterns associated with transformation mechanisms. Results indicated that photochemical degradation of TBBPA would happen only with addition to humic acid in air bubbling but not in N2 bubbling. For photochemical reaction of TBBPA, singlet oxygen (1O2) was found to be important reactive oxygen species for the photochemical degradation of TBBPA. 2,6-Dibromo-4-(propan-2-ylidene)cyclohexa-2,5-dienone and two isopropyl phenol derivatives were identified as the photochemical degradation intermediates by 1O2. 2,6-Dibromo-4-(1-methoxy-ethyl)-phenol was determined as an intermediate via oxidative skeletal rearrangement, reduction and O-methylation. Hydrolysis product hydroxyl-tribromobisphenol A was also observed in the reductive debromination process. In addition, to deeply explore the mechanism, carbon and bromine isotope analysis were performed using gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS) and gas chromatography-multicollector inductively coupled plasma mass spectrometry (GC/MC/ICPMS) during the photochemical degradation of TBBPA. The results showed that photochemical degradation could not result in statistically significant isotope fractionation, indicated that the bond cleavage of C-C and C-Br were not the rate controlling process. Stable isotope of carbon being not fractionated will be useful for distinguishing the pathways of TBBPA and tracing TBBPA fate in water systems. This work sheds light on photochemical degradation mechanisms of brominated organic contaminants.


Asunto(s)
Restauración y Remediación Ambiental/métodos , Fotólisis , Bifenilos Polibrominados/análisis , Contaminantes Químicos del Agua/análisis , Sustancias Húmicas/análisis , Radical Hidroxilo/química , Isótopos , Modelos Teóricos , Oxidación-Reducción , Bifenilos Polibrominados/efectos de la radiación , Oxígeno Singlete/química , Contaminantes Químicos del Agua/efectos de la radiación
6.
Environ Sci Pollut Res Int ; 27(18): 22749-22757, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32323238

RESUMEN

Multi-elemental C-Br-Cl compound-specific isotope analysis was applied for characterizing abiotic and biotic degradation of the environmental pollutant 1-bromo-2-chloroethane (BCE). Isotope effects were determined in the model processes following hydrolytic dehalogenation and dihaloelimination pathways as well as in a microcosm experiment by the microbial culture from the contaminated site. Hydrolytic dehalogenation of BCE under alkaline conditions and by DhaA enzyme resulted in similar dual isotope slopes (ɅC/Br 21.9 ± 4.7 and 19.4 ± 1.8, respectively, and ɅC/Cl ~ ∞). BCE transformation by cyanocobalamin (B12) and by Sulfurospirillum multivorans followed dihaloelimination and was accompanied by identical, within the uncertainty range, dual isotope slopes (ɅC/Br 8.4 ± 1.7 and 7.9 ± 4.2, respectively, and ɅC/Cl 2.4 ± 0.3 and 1.5 ± 0.6, respectively). Changes over time in the isotope composition of BCE from the contaminated groundwater showed only a slight variation in δ13C values and were not sufficient for the elucidation of the BCE degradation pathway in situ. However, an anaerobic microcosm experiment with the enrichment cultures from the contaminated groundwater presented dual isotope slopes similar to the hydrolytic pathway, suggesting that the potential for BCE degradation in situ by the hydrolytic dehalogenation pathway exists in the contaminated site.


Asunto(s)
Agua Subterránea , Hidrocarburos Halogenados , Biodegradación Ambiental , Campylobacteraceae , Isótopos de Carbono , Etano/análogos & derivados
7.
Chemosphere ; 246: 125746, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-31918087

RESUMEN

Brominated organic compounds (BOCs), abundant in Nature, originate from its own sources or anthropogenic activity. Many of these compounds are harmful and constitute a serious threat, therefore it is important to study and understand their behavior and fate. In situ, BOCs undergo various chemical and biochemical reactions through distinctive mechanistic pathways. However, breaking C-Br specific bond is a crucial step in the transformation of brominated organic compounds. Understanding the mechanisms of debromination can be substantially enhanced by studying Br isotope effects. In this Mini-review we provide overlook of existing experimental techniques for Br isotope analysis, discuss Br kinetic isotope effects measured for selected chemical and biochemical reactions in the light of underlying reaction mechanisms, and review the outcome from computational study of performed to provide more insightful interpretation of observed findings.


Asunto(s)
Bromo/química , Halogenación , Isótopos/análisis , Cinética
8.
Chemosphere ; 242: 125130, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31669996

RESUMEN

Identifying co-metabolic TCE oxidation in polluted groundwater is challenging due to lack of indicative by-products. This challenge may theoretically be resolved if the oxidation process can be characterized by a distinct dual isotope enrichment. In this work, we aimed to explore the carbon and chlorine isotope effects associated with TCE oxidation by a variety of oxygenases. These included pure strains and enrichment cultures of methane, toluene and ammonia oxidizers, as well as experiments with crude extracts. Isotope effects determined for TCE oxidation by toluene and ammonia oxidizers were mostly in line with expected values for epoxidation mechanism (ϵ13C -11.0 ±â€¯0.7 to -24.8 ±â€¯0.2‰ and ϵ37Cl +0.9 ± 0.5 to +1.0 ± 0.4‰), whereas, the methanotrophs resulted in distinctively different isotope effects (ϵ13C -2.4 ±â€¯0.4 to -3.4 ±â€¯0.8‰ and ϵ37Cl -1.8 ±â€¯0.2 to -2.9 ±â€¯0.9‰). It is suggested that in TCE oxidation by methanotrophs, substrate binding rather than bond cleavage is rate limiting, leading to this unexpected isotope effect. On the environmental level, our results imply that the oxidative process can be differentiated if catalyzed by toluene and ammonia oxidizers or by methanotrophs. Additionally, the oxidative process can be distinguished from the reductive one. However, using dual isotope analysis in the field may result in an under-estimation of the overall co-metabolic process if methanotrophs are to be excluded due to low isotope effects.


Asunto(s)
Biodegradación Ambiental , Cloro/metabolismo , Tricloroetileno/metabolismo , Contaminantes Químicos del Agua/metabolismo , Carbono , Isótopos de Carbono/análisis , Respiración de la Célula , Fraccionamiento Químico , Cloro/química , Contaminación Ambiental/análisis , Agua Subterránea/química , Metano , Tricloroetileno/química , Contaminantes Químicos del Agua/química
9.
Anal Chem ; 91(19): 12290-12297, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31454232

RESUMEN

Increasing applications of compound-specific chlorine isotope analysis (CSIA) emphasize the need for chlorine isotope standards that bracket a wider range of isotope values in order to ensure accurate results. With one exception (USGS38), however, all international chlorine isotope reference materials (chloride and perchlorate salts) fall within the narrow range of one per mille. Furthermore, compound-specific working standards are required for chlorine CSIA but are not available for most organic substances. We took advantage of isotope effects in chemical dehalogenation reactions to generate (i) silver chloride (CT16) depleted in 37Cl/35Cl and (ii) compound-specific standards of the herbicides acetochlor and S-metolachlor (Aceto2, Metola2) enriched in 37Cl/35Cl. Calibration against the international reference standards USGS38 (-87.90 ‰) and ISL-354 (+0.05 ‰) by complementary methods (gas chromatography-isotope ratio mass spectrometry, GC-IRMS, versus gas chromatography-multicollector inductively coupled plasma mass spectrometry, GC-MC-ICPMS) gave a consensus value of δ37ClCT16 = -26.82 ± 0.18 ‰. Preliminary GC-MC-ICPMS characterization of commercial Aceto1 and Metola1 versus Aceto2 and Metola2 resulted in tentative values of δ37ClAceto1 = 0.29 ± 0.29 ‰, δ37ClAceto2 = 18.54 ± 0.20 ‰, δ37ClMetola1 = -4.28 ± 0.17 ‰ and δ37ClMetola2 = 5.12 ± 0.27 ‰. The possibility to generate chlorine isotope in-house standards with pronounced shifts in isotope values offers a much-needed basis for accurate chlorine CSIA.

10.
Biodegradation ; 30(1): 37-46, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30350250

RESUMEN

Anthropogenic activities have introduced elevated levels of brominated phenols to the environment. These compounds are associated with toxic and endocrine effects, and their environmental fate is of interest. An aerobic strain Ochrobactrum sp. HI1 was isolated from soils in the vicinity of a bromophenol production plant and tested for its ability to degrade 4-bromophenol (4-BP). A ring hydroxylation pathway of degradation was proposed, using the evidence from degradation intermediates analysis and multi-element (C, Br, H) compound-specific isotope analysis. Benzenetriol and 4-bromocatechol were detected during degradation of 4-bromophenol. Degradation resulted in a normal carbon isotope effect (εC = -1.11 ± 0.09‰), and in insignificant bromine and hydrogen isotope fractionation. The dual C-Br isotope trend for ring hydroxylation obtained in the present study differs from the trends expected for reductive debromination or photolysis. Thus, the isotope data reported herein can be applied in future field studies to delineate aerobic biodegradation processes and differentiate them from other natural attenuation processes.


Asunto(s)
Clima Desértico , Ochrobactrum/metabolismo , Fenoles/metabolismo , Microbiología del Suelo , Aerobiosis , Biodegradación Ambiental , Isótopos de Carbono/química , Fraccionamiento Químico , Fenoles/química , Filogenia , ARN Ribosómico 16S/genética
11.
Rapid Commun Mass Spectrom ; 33(7): 667-677, 2019 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-30512206

RESUMEN

RATIONALE: Compound-specific isotope analysis (CSIA) is a valuable tool in environmental chemistry and in other fields of science. Currently, hydrogen CSIA of polar compounds containing exchangeable hydrogen is uncommon. To extend the scope of CSIA applications, we present an alternative method of analysis, bypassing the typical step of derivatization. The method is demonstrated for two environmental contaminants, 4-bromophenol (4BP) and 2,4,6-tribromophenol (TBP). METHODS: Net isotope ratios obtained by CSIA combine the isotope composition of nonexchangeable, carbon-bound hydrogen and the exchangeable hydroxyl hydrogen. To constrain the isotope composition of the latter, an ethyl acetate solution of 4BP or TBP injected into the IRMS instrument was amended with excess water of known isotope composition. The results were calibrated using bracketing control samples analyzed in sequence with the unknown samples and the known isotope ratios of water present in ethyl acetate solution. RESULTS: The analytical precision was comparable to the precision for halogenated compounds without exchangeable hydrogen, analyzed using similar instrumentation. The isotope ratios of the bromophenols correlated with the isotope composition of the water in the sample matrix, suggesting that the hydroxyl group of the target compound remained close to the equilibrium with the sample water during the passage through the instrument. Based on this relationship, the signatures of the nonexchangeable hydrogen were obtained using the isotope composition of sample water as the proxy for the isotope composition of the target compound hydroxyl group. CONCLUSIONS: The developed method could be adopted to analysis of other low molecular weight compounds amenable to gas chromatography without the absolute need for derivatization. Currently, the method can be used for samples from laboratory experiments, with high concentrations of the target compound to provide mechanistic insight into the degradation mechanisms. Further work would be required to optimize the method to low concentration environmental samples.

12.
J Phys Chem B ; 122(29): 7353-7364, 2018 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-29961315

RESUMEN

Isotopic fractionation of volatile organic compounds (VOCs), which are under strict measures of control because of their potential harm to the environment and humans, has an important ecological aspect, as the isotopic composition of compounds may depend on the conditions in which such compounds are distributed in Nature. Therefore, detailed knowledge on isotopic fractionation, not only experimental but also based on theoretical models, is crucial to follow conditions and pathways within which these contaminants are spread throughout the ecosystems. In this work, we present carbon and, for the first time, bromine vapor pressure isotope effect (VPIE) on the evaporation process from pure-phase systems-dibromomethane and bromobenzene, the representatives of aliphatic and aromatic brominated VOCs. We combine isotope effects measurements with their theoretical prediction using three computational techniques, namely path integral molecular dynamics, QM cluster, and hybrid ONIOM models. While evaporation of both compounds resulted in normal bromine VPIEs, the difference in the direction of carbon isotopic fractionation is observed for the aliphatic and aromatic compounds, where VPIEs are inverse and normal, respectively. Even though theoretical models tested here turned out to be insufficient for quantitative agreement with the experimental values, cluster electronic structure calculations, as well as two-layer ONIOM computations, provided better reproduction of experimental trends.

14.
Chemosphere ; 190: 211-217, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28987410

RESUMEN

The potential of compound-specific stable isotope analysis (CSIA) to characterize biotransformation of brominated organic compounds (BOCs) was assessed and compared to chlorinated analogues. Sulfurospirillum multivorans and Desulfitobacterium hafniense PCE-S catalyzed the dehalogenation of tribromoethene (TBE) to either vinyl bromide (VB) or ethene, respectively. Significantly lower isotope fractionation was observed for TBE dehalogenation by S. multivorans (εC = -1.3 ± 0.2‰) compared to D. hafniense (εC = -7.7 ± 1.5‰). However, higher fractionation was observed for dibromoethene (DBE) dehalogenation by S. multivorans (εC = -16.8 ± 1.8‰ and -21.2 ± 1.6‰ for trans- and cis-1,2- (DBE) respectively), compared to D. hafniense PCE-S (εC = -9.5 ± 1.2‰ and -14.5 ± 0.7‰ for trans-1,2-DBE and cis-1,2-DBE, respectively). Significant, but similar, bromine fractionation was observed for for S. multivorans (εBr = -0.53 ± 0.15‰, -1.03 ± 0.26‰, and -1.18 ± 0.13‰ for trans-1,2-DBE, cis-1,2-DBE and TBE, respectively) and D. hafniense PCE-S (εBr = -0.97 ± 0.28‰, -1.16 ± 0.36‰, and -1.34 ± 0.32‰ for cis-1,2-DBE, TBE and trans-1,2-DBE, respectively). Variable CBr dual-element slopes were estimated at Λ (εC/εBr) = 1.03 ± 0.2, 17.9 ± 5.8, and 29.9 ± 11.0 for S. multivorans debrominating TBE, cis-1,2-DBE and trans-1,2-DBE, respectively, and at 7.14 ± 1.6, 8.27 ± 3.7, and 8.92 ± 2.4 for D. hafniense PCE-S debrominating trans-1,2-DBE, TBE and cis-1,2-DBE, respectively. A high variability in isotope fractionation, which was substrate property related, was observed for S. multivorans but not D. hafniense, similar as observed for chlorinated ethenes, and may be due to rate-limiting steps preceding the bond-cleavage or differences in the reaction mechanism. Overall, significant isotope fractionation was observed and, therefore, CSIA can be applied to monitor the fate of brominated ethenes in the environment. Isotope effects differences, however, are not systematically comparable to chlorinated ethenes.


Asunto(s)
Bromo/química , Carbono/química , Desulfitobacterium/metabolismo , Dibromuro de Etileno/metabolismo , Halogenación , Biotransformación , Isótopos de Carbono/química , Catálisis , Fraccionamiento Químico
15.
Chemosphere ; 193: 17-23, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29126061

RESUMEN

In this work, we explore the effect of solvent on 13C and 81Br kinetic isotope effects (KIEs) during elimination of bromine substituent from brominated organic compounds promoted by hydroxyl anion. In the present study, we investigate HBr elimination from 2-bromoethylbenzene in three different polar media (water, ethanol, and acetonitrile) as well as bromide ion elimination from 1,2-dibromoethane upon nucleophilic substitution by the hydroxyl ion in aqueous solution using carbon and bromine isotope analysis as mechanistic tools. We reconsider the hypothesis that the magnitude of leaving group halide KIE should visibly depend on the solvent and bond-breaking in a protic solvent should be accompanied by hydrogen bonding which would result in less zero-point energy loss than in an aprotic solvent. Modeling the elimination reaction using the available popular theoretical methods along with different approaches for including environment effects we demonstrate in the presented study no interpretable effect of the solvent on the transition state structure and hence on the theoretically predicted KIEs. The comparison of the magnitudes of carbon and bromine kinetic isotope effects for two different mechanistic pathways (elimination vs substitution) is also discussed.


Asunto(s)
Bromo/química , Carbono/química , Modelos Químicos , Contaminantes Químicos del Agua/química , Isótopos de Carbono/química , Halogenación , Hidróxidos , Cinética
16.
Chemosphere ; 184: 192-196, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28595144

RESUMEN

In the present study we propose a new analytical method for 37Cl/35Cl analysis in perchlorate by Ion Chromatography(IC) coupled to Multicollector Inductively Coupled Plasma Mass Spectrometry (MC-ICPMS). The accuracy of the analytical method was validated by analysis of international perchlorate standard materials USGS-37 and USGS -38; analytical precision better than ±0.4‰ was achieved. 37Cl/35Cl isotope ratio analysis in perchlorate during laboratory biodegradation experiment with microbial cultures enriched from the contaminated soil in Israel resulted in isotope enrichment factor ε37Cl = -13.3 ± 1‰, which falls in the range reported previously for perchlorate biodegradation by pure microbial cultures. The proposed analytical method may significantly simplify the procedure for isotope analysis of perchlorate which is currently applied in environmental studies.


Asunto(s)
Cloro/análisis , Percloratos/análisis , Espectrofotometría Atómica , Biodegradación Ambiental , Cromatografía de Gases y Espectrometría de Masas/métodos , Isótopos/análisis , Israel , Análisis Espectral
17.
J Phys Chem A ; 121(12): 2311-2321, 2017 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-28248520

RESUMEN

Herein, we present a combined (experimental and computational) study of the Finkelstein reaction in condensed phase, where bromine is substituted by iodine in 2-bromoethylbenzene, in the presence of either acetone or acetonitrile as a solvent. Performance of various density functional theory and ab initio methods were tested for reaction barrier heights as well as for bromine and carbon kinetic isotope effects (KIEs). Two different implicit solvation models were examined (PCM and SMD). Theoretically predicted KIEs were compared with experimental values, while reaction barrier heights were assessed using the CCSD(T)-level and experimental energies as reference. In general, although the tested parameters (energies and KIEs) do not exhibit any substantial difference upon a change of the solvent, the different behavior of the theoretical methods was observed depending on the solvent. With respect to isotope effects, both PCM and SMD seem to perform very similarly, though results obtained with PCM are slightly closer to the experimental values. For predicting reaction barriers, utilization of either PCM or SMD solvation models yielded different results. Functionals from the ωB97 family: ωB97, ωB97X, and ωB97X-D provide the most accurate results for the studied system.

18.
Ther Adv Chronic Dis ; 8(1): 16-25, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28203348

RESUMEN

The pathophysiology, diagnosis and treatment of female sexual interest in pre- and post-menopausal women present a complex arena for patients and physicians to navigate. Flibanserin was the first pharmacologic treatment, approved by the United States Food and Drug Administration in August 2015, for hypoactive sexual desire disorder (HSDD) in premenopausal women. Side effects, contraindications and lack of approval in postmenopausal women are all limitations, as are issues surrounding patient and physician knowledge and access. Testosterone, buspirone, sildenafil, bupropion, bremelanotide, as well as herbal medications (Herbal vX or Tribulus terrestris) have demonstrated some clinical benefit in women with sexual dysfunction disorders however, trials have significant design, dosing or generalizability limitations. Nonpharmaceutical cognitive behavioral therapy, mindfulness meditation, pelvic floor therapy, and clitoral stimulators are also interventions women may pursue. This manuscript will explore the clinical data regarding these therapeutic modalities so as to bring attention to this issue of female HSDD, to offer an overview of current research, and to incite providers to initiate discussion among themselves and their patients.

19.
Rapid Commun Mass Spectrom ; 30(17): 1951-6, 2016 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-27501429

RESUMEN

RATIONALE: Brominated organic compounds (BOCs) are common persistent toxic pollutants. Compound-specific stable bromine isotope ratio analysis is one of the potential approaches for investigating BOC transformations in the environment. In the present study, we demonstrate that precise bromine isotope analysis of BOCs can be successfully performed by gas chromatography/quadrupole mass spectrometry (GC/qMS) systems that are widely available in analytical laboratories. METHODS: Optimization and validation of the GC/qMS method were performed by analysis of bromoform, 3-bromophenol and 4-bromotoluene. In addition, comparison of the results obtained by GC/qMS and GC/multi-collector inductively coupled plasma mass spectrometry (MC-ICPMS) for 1,2-dibromoethane and 3-bromophenol samples with different bromine isotope composition was carried out to evaluate the analytical performance of the developed method. RESULTS: Precisions in the range 0.2-0.3‰ were attained for sample amounts in the range of tens to thousands pmol. Good correlation between the results obtained by GC/qMS and GC/MC-ICPMS for laboratory standard materials (1,2-dibromoethane and 3-bromophenol) (regression coefficient R(2)  > 0.98) was achieved. CONCLUSIONS: The GC/qMS method for bromine isotope analysis shows a good performance and can be applied routinely for studying transformations of BOCs. Due to the observed dependence of the measured isotope ratios on the amount of the analyte and the calculation scheme applied, normalization of the results versus appropriate standards is required for source attribution applications. Copyright © 2016 John Wiley & Sons, Ltd.

20.
Environ Sci Technol ; 50(18): 9855-63, 2016 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-27526716

RESUMEN

The present study investigated dual carbon-bromine isotope fractionation of the common groundwater contaminant ethylene dibromide (EDB) during chemical and biological transformations, including aerobic and anaerobic biodegradation, alkaline hydrolysis, Fenton-like degradation, debromination by Zn(0) and reduced corrinoids. Significantly different correlation of carbon and bromine isotope fractionation (ΛC/Br) was observed not only for the processes following different transformation pathways, but also for abiotic and biotic processes with, the presumed, same formal chemical degradation mechanism. The studied processes resulted in a wide range of ΛC/Br values: ΛC/Br = 30.1 was observed for hydrolysis of EDB in alkaline solution; ΛC/Br between 4.2 and 5.3 were determined for dibromoelimination pathway with reduced corrinoids and Zn(0) particles; EDB biodegradation by Ancylobacter aquaticus and Sulfurospirillum multivorans resulted in ΛC/Br = 10.7 and 2.4, respectively; Fenton-like degradation resulted in carbon isotope fractionation only, leading to ΛC/Br ∞. Calculated carbon apparent kinetic isotope effects ((13)C-AKIE) fell with 1.005 to 1.035 within expected ranges according to the theoretical KIE, however, biotic transformations resulted in weaker carbon isotope effects than respective abiotic transformations. Relatively large bromine isotope effects with (81)Br-AKIE of 1.0012-1.002 and 1.0021-1.004 were observed for nucleophilic substitution and dibromoelimination, respectively, and reveal so far underestimated strong bromine isotope effects.


Asunto(s)
Bromo , Dibromuro de Etileno , Biodegradación Ambiental , Carbono , Isótopos de Carbono/metabolismo , Fraccionamiento Químico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA