Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biomedicines ; 10(8)2022 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-36009449

RESUMEN

Inflammatory bowel disease (IBD) is a chronic recurrent inflammatory disease with unknown etiology. Dextran sulfate sodium (DSS) induced colitis is a widely used mouse model in IBD research. DSS colitis involves activation of the submucosal immune system and can be used to study IBD-like disease characteristics in acute, chronic, remission and transition phases. Insight into colon inflammatory parameters is needed to understand potentially irreversible adaptations to the chronification of colitis, determining the baseline and impact of further inflammatory episodes. We performed analyses of non-invasive and invasive colitis parameters in acute, chronic and remission phases of the DSS colitis in C57BL/6 mice. Non-invasive colitis parameters poorly reflected inflammatory aspects of colitis in chronic remission phase. We found invasive inflammatory parameters, positively linked to repeated DSS-episodes, such as specific colon weight, inflamed colon area, spleen weight, absolute cell numbers of CD4+ and CD8+ T cells as well as B cells, blood IFN-γ level, colonic chemokines BLC and MDC as well as the prevalence of Turicibacter species in feces. Moreover, microbial Lactobacillus species decreased with chronification of disease. Our data point out indicative parameters of recurrent gut inflammation in context of DSS colitis.

2.
Nat Commun ; 13(1): 2982, 2022 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-35624087

RESUMEN

Cytotoxic stress activates stress-activated kinases, initiates adaptive mechanisms, including the unfolded protein response (UPR) and autophagy, and induces programmed cell death. Fatty acid unsaturation, controlled by stearoyl-CoA desaturase (SCD)1, prevents cytotoxic stress but the mechanisms are diffuse. Here, we show that 1,2-dioleoyl-sn-glycero-3-phospho-(1'-myo-inositol) [PI(18:1/18:1)] is a SCD1-derived signaling lipid, which inhibits p38 mitogen-activated protein kinase activation, counteracts UPR, endoplasmic reticulum-associated protein degradation, and apoptosis, regulates autophagy, and maintains cell morphology and proliferation. SCD1 expression and the cellular PI(18:1/18:1) proportion decrease during the onset of cell death, thereby repressing protein phosphatase 2 A and enhancing stress signaling. This counter-regulation applies to mechanistically diverse death-inducing conditions and is found in multiple human and mouse cell lines and tissues of Scd1-defective mice. PI(18:1/18:1) ratios reflect stress tolerance in tumorigenesis, chemoresistance, infection, high-fat diet, and immune aging. Together, PI(18:1/18:1) is a lipokine that links fatty acid unsaturation with stress responses, and its depletion evokes stress signaling.


Asunto(s)
Transducción de Señal , Estearoil-CoA Desaturasa , Animales , Apoptosis , Ácidos Grasos , Ratones , Estearoil-CoA Desaturasa/genética , Estearoil-CoA Desaturasa/metabolismo , Respuesta de Proteína Desplegada
4.
Oncogene ; 37(16): 2181-2196, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29382926

RESUMEN

Ewing sarcoma (ES) is an aggressive bone and soft tissue malignancy that predominantly affects children and adolescents. CD99 is a cell surface protein that is highly expressed on ES cells and is required to maintain their malignancy. We screened small molecule libraries for binding to extracellular domain of recombinant CD99 and subsequent inhibition of ES cell growth. We identified two structurally similar FDA-approved compounds, clofarabine and cladribine that selectively inhibited the growth of ES cells in a panel of 14 ES vs. 28 non-ES cell lines. Both drugs inhibited CD99 dimerization and its interaction with downstream signaling components. A membrane-impermeable analog of clofarabine showed similar cytotoxicity in culture, suggesting that it can function through inhibiting CD99 independent of DNA metabolism. Both drugs drastically inhibited anchorage-independent growth of ES cells, but clofarabine was more effective in inhibiting growth of three different ES xenografts. Our findings provide a novel molecular mechanism for clofarabine that involves direct binding to a cell surface receptor CD99 and inhibiting its biological activities.


Asunto(s)
Antígeno 12E7/metabolismo , Neoplasias Óseas/patología , Proliferación Celular/efectos de los fármacos , Clofarabina/farmacología , Sarcoma de Ewing/patología , Antígeno 12E7/antagonistas & inhibidores , Células A549 , Animales , Línea Celular Tumoral , Femenino , Humanos , Células MCF-7 , Ratones , Ratones SCID , Unión Proteica , Transducción de Señal/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...