Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
PLoS Comput Biol ; 20(6): e1012173, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38900779

RESUMEN

Interactive Jupyter Notebooks in combination with Conda environments can be used to generate FAIR (Findable, Accessible, Interoperable and Reusable/Reproducible) biomolecular simulation workflows. The interactive programming code accompanied by documentation and the possibility to inspect intermediate results with versatile graphical charts and data visualization is very helpful, especially in iterative processes, where parameters might be adjusted to a particular system of interest. This work presents a collection of FAIR notebooks covering various areas of the biomolecular simulation field, such as molecular dynamics (MD), protein-ligand docking, molecular checking/modeling, molecular interactions, and free energy perturbations. Workflows can be launched with myBinder or easily installed in a local system. The collection of notebooks aims to provide a compilation of demonstration workflows, and it is continuously updated and expanded with examples using new methodologies and tools.


Asunto(s)
Biología Computacional , Simulación de Dinámica Molecular , Programas Informáticos , Flujo de Trabajo , Biología Computacional/métodos , Lenguajes de Programación , Interfaz Usuario-Computador , Proteínas/química , Simulación del Acoplamiento Molecular , Reproducibilidad de los Resultados , Ligandos
3.
NPJ Vaccines ; 9(1): 53, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38448450

RESUMEN

Vaccines based on mRNA technology have revolutionized the field. In fact, lipid nanoparticles (LNP) formulated with mRNA are the preferential vaccine platform used in the fight against SARS-CoV-2 infection, with wider application against other diseases. The high demand and property right protection of the most potent cationic/ionizable lipids used for LNP formulation of COVID-19 mRNA vaccines have promoted the design of alternative nanocarriers for nucleic acid delivery. In this study we have evaluated the immunogenicity and efficacy of different rationally designed lipid and polymeric-based nanoparticle prototypes against SARS-CoV-2 infection. An mRNA coding for a trimeric soluble form of the receptor binding domain (RBD) of the spike (S) protein from SARS-CoV-2 was encapsulated using different components to form nanoemulsions (NE), nanocapsules (NC) and lipid nanoparticles (LNP). The toxicity and biological activity of these prototypes were evaluated in cultured cells after transfection and in mice following homologous prime/boost immunization. Our findings reveal good levels of RBD protein expression with most of the formulations. In C57BL/6 mice immunized intramuscularly with two doses of formulated RBD-mRNA, the modified lipid nanoparticle (mLNP) and the classical lipid nanoparticle (LNP-1) were the most effective delivery nanocarriers at inducing binding and neutralizing antibodies against SARS-CoV-2. Both prototypes fully protected susceptible K18-hACE2 transgenic mice from morbidity and mortality following a SARS-CoV-2 challenge. These results highlight that modulation of mRNAs immunogenicity can be achieved by using alternative nanocarriers and support further assessment of mLNP and LNP-1 prototypes as delivery vehicles for mRNA vaccines.

4.
Nucleic Acids Res ; 52(D1): D255-D264, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-37971353

RESUMEN

RegulonDB is a database that contains the most comprehensive corpus of knowledge of the regulation of transcription initiation of Escherichia coli K-12, including data from both classical molecular biology and high-throughput methodologies. Here, we describe biological advances since our last NAR paper of 2019. We explain the changes to satisfy FAIR requirements. We also present a full reconstruction of the RegulonDB computational infrastructure, which has significantly improved data storage, retrieval and accessibility and thus supports a more intuitive and user-friendly experience. The integration of graphical tools provides clear visual representations of genetic regulation data, facilitating data interpretation and knowledge integration. RegulonDB version 12.0 can be accessed at https://regulondb.ccg.unam.mx.


Asunto(s)
Bases de Datos Genéticas , Escherichia coli K12 , Regulación Bacteriana de la Expresión Génica , Biología Computacional/métodos , Escherichia coli K12/genética , Internet , Transcripción Genética
5.
Nucleic Acids Res ; 52(D1): D393-D403, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-37953362

RESUMEN

Molecular dynamics (MD) simulations are keeping computers busy around the world, generating a huge amount of data that is typically not open to the scientific community. Pioneering efforts to ensure the safety and reusability of MD data have been based on the use of simple databases providing a limited set of standard analyses on single-short trajectories. Despite their value, these databases do not offer a true solution for the current community of MD users, who want a flexible analysis pipeline and the possibility to address huge non-Markovian ensembles of large systems. Here we present a new paradigm for MD databases, resilient to large systems and long trajectories, and designed to be compatible with modern MD simulations. The data are offered to the community through a web-based graphical user interface (GUI), implemented with state-of-the-art technology, which incorporates system-specific analysis designed by the trajectory providers. A REST API and associated Jupyter Notebooks are integrated into the platform, allowing fully customized meta-analysis by final users. The new technology is illustrated using a collection of trajectories obtained by the community in the context of the effort to fight the COVID-19 pandemic. The server is accessible at https://bioexcel-cv19.bsc.es/#/. It is free and open to all users and there are no login requirements. It is also integrated into the simulations section of the BioExcel-MolSSI COVID-19 Molecular Structure and Therapeutics Hub: https://covid.molssi.org/simulations/ and is part of the MDDB effort (https://mddbr.eu).


Asunto(s)
COVID-19 , Bases de Datos Factuales , Programas Informáticos , Humanos , COVID-19/epidemiología , Simulación de Dinámica Molecular , Pandemias , Metaanálisis como Asunto
7.
Adv Healthc Mater ; 12(25): e2300150, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37563883

RESUMEN

Biomaterials research output has experienced an exponential increase over the last three decades. The majority of research is published in the form of scientific articles and is therefore available as unstructured text, making it a challenging input for computational processing. Computational tools are becoming essential to overcome this information overload. Among them, text mining systems present an attractive option for the automated extraction of information from text documents into structured datasets. This work presents the first automated system for biomaterial related information extraction from the National Library of Medicine's premier bibliographic database (MEDLINE) research abstracts into a searchable database. The system is a text mining pipeline that periodically retrieves abstracts from PubMed and identifies research and clinical studies of biomaterials. Thereafter, the pipeline identifies sixteen concept types of interest in the abstract using the Biomaterials Annotator, a tool for biomaterials Named Entity Recognition (NER). These concepts of interest, along with the abstract and relevant metadata are then deposited in DEBBIE, the Database of Experimental Biomaterials and their Biological Effect. DEBBIE is accessible through a web application that provides keyword searches and displays results in an intuitive and meaningful manner, aiming to facilitate an efficient mapping and organization of biomaterials information.


Asunto(s)
Acceso a la Información , Minería de Datos , Estados Unidos , Minería de Datos/métodos , PubMed , Bases de Datos Factuales , Programas Informáticos
8.
Eur Radiol Exp ; 7(1): 20, 2023 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-37150779

RESUMEN

Artificial intelligence (AI) is transforming the field of medical imaging and has the potential to bring medicine from the era of 'sick-care' to the era of healthcare and prevention. The development of AI requires access to large, complete, and harmonized real-world datasets, representative of the population, and disease diversity. However, to date, efforts are fragmented, based on single-institution, size-limited, and annotation-limited datasets. Available public datasets (e.g., The Cancer Imaging Archive, TCIA, USA) are limited in scope, making model generalizability really difficult. In this direction, five European Union projects are currently working on the development of big data infrastructures that will enable European, ethically and General Data Protection Regulation-compliant, quality-controlled, cancer-related, medical imaging platforms, in which both large-scale data and AI algorithms will coexist. The vision is to create sustainable AI cloud-based platforms for the development, implementation, verification, and validation of trustable, usable, and reliable AI models for addressing specific unmet needs regarding cancer care provision. In this paper, we present an overview of the development efforts highlighting challenges and approaches selected providing valuable feedback to future attempts in the area.Key points• Artificial intelligence models for health imaging require access to large amounts of harmonized imaging data and metadata.• Main infrastructures adopted either collect centrally anonymized data or enable access to pseudonymized distributed data.• Developing a common data model for storing all relevant information is a challenge.• Trust of data providers in data sharing initiatives is essential.• An online European Union meta-tool-repository is a necessity minimizing effort duplication for the various projects in the area.


Asunto(s)
Inteligencia Artificial , Neoplasias , Humanos , Diagnóstico por Imagen , Predicción , Macrodatos
9.
J Chem Inf Model ; 63(1): 321-334, 2023 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-36576351

RESUMEN

Mutations in the kinase domain of the epidermal growth factor receptor (EGFR) can be drivers of cancer and also trigger drug resistance in patients receiving chemotherapy treatment based on kinase inhibitors. A priori knowledge of the impact of EGFR variants on drug sensitivity would help to optimize chemotherapy and design new drugs that are effective against resistant variants before they emerge in clinical trials. To this end, we explored a variety of in silico methods, from sequence-based to "state-of-the-art" atomistic simulations. We did not find any sequence signal that can provide clues on when a drug-related mutation appears or the impact of such mutations on drug activity. Low-level simulation methods provide limited qualitative information on regions where mutations are likely to cause alterations in drug activity, and they can predict around 70% of the impact of mutations on drug efficiency. High-level simulations based on nonequilibrium alchemical free energy calculations show predictive power. The integration of these "state-of-the-art" methods into a workflow implementing an interface for parallel distribution of the calculations allows its automatic and high-throughput use, even for researchers with moderate experience in molecular simulations.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Neoplasias Pulmonares/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/química , Resistencia a Medicamentos/genética , Receptores ErbB/metabolismo , Mutación , Resistencia a Antineoplásicos/genética
10.
Vaccines (Basel) ; 12(1)2023 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-38250827

RESUMEN

The COVID-19 pandemic has brought significant changes and advances in the field of vaccination, including the implementation and widespread use of encapsidated mRNA vaccines in general healthcare practice. Here, we present two new mRNAs expressing antigenic parts of the SARS-CoV-2 spike protein and provide data supporting their functionality. The first mRNA, called RBD-mRNA, encodes a trimeric form of the virus spike protein receptor binding domain (RBD). The other mRNA, termed T-mRNA, codes for the relevant HLA I and II spike epitopes. The two mRNAs (COVARNA mRNAs) were designed to be used for delivery to cells in combination, with the RBD-mRNA being the primary source of antigen and the T-mRNA working as an enhancer of immunogenicity by supporting CD4 and CD8 T-cell activation. This innovative approach substantially differs from other available mRNA vaccines, which are largely directed to antibody production by the entire spike protein. In this study, we first show that both mRNAs are functionally transfected into human antigen-presenting cells (APCs). We obtained peripheral blood mononuclear cell (PBMC) samples from three groups of voluntary donors differing in their immunity against SARS-CoV-2: non-infected (naïve), infected-recovered (convalescent), and vaccinated. Using an established method of co-culturing autologous human dendritic cells (hDCs) with T-cells, we detected proliferation and cytokine secretion, thus demonstrating the ability of the COVARNA mRNAs to activate T-cells in an antigen-specific way. Interestingly, important differences in the intensity of the response between the infected-recovered (convalescent) and vaccinated donors were observed, with the levels of T-cell proliferation and cytokine secretion (IFNγ, IL-2R, and IL-13) being higher in the vaccinated group. In summary, our data support the further study of these mRNAs as a combined approach for future use as a vaccine.

12.
Artículo en Inglés | MEDLINE | ID: mdl-35935573

RESUMEN

Exascale computing has been a dream for ages and is close to becoming a reality that will impact how molecular simulations are being performed, as well as the quantity and quality of the information derived for them. We review how the biomolecular simulations field is anticipating these new architectures, making emphasis on recent work from groups in the BioExcel Center of Excellence for High Performance Computing. We exemplified the power of these simulation strategies with the work done by the HPC simulation community to fight Covid-19 pandemics. This article is categorized under:Data Science > Computer Algorithms and ProgrammingData Science > Databases and Expert SystemsMolecular and Statistical Mechanics > Molecular Dynamics and Monte-Carlo Methods.

13.
Nat Med ; 28(8): 1662-1671, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35953718

RESUMEN

Richter transformation (RT) is a paradigmatic evolution of chronic lymphocytic leukemia (CLL) into a very aggressive large B cell lymphoma conferring a dismal prognosis. The mechanisms driving RT remain largely unknown. We characterized the whole genome, epigenome and transcriptome, combined with single-cell DNA/RNA-sequencing analyses and functional experiments, of 19 cases of CLL developing RT. Studying 54 longitudinal samples covering up to 19 years of disease course, we uncovered minute subclones carrying genomic, immunogenetic and transcriptomic features of RT cells already at CLL diagnosis, which were dormant for up to 19 years before transformation. We also identified new driver alterations, discovered a new mutational signature (SBS-RT), recognized an oxidative phosphorylation (OXPHOS)high-B cell receptor (BCR)low-signaling transcriptional axis in RT and showed that OXPHOS inhibition reduces the proliferation of RT cells. These findings demonstrate the early seeding of subclones driving advanced stages of cancer evolution and uncover potential therapeutic targets for RT.


Asunto(s)
Leucemia Linfocítica Crónica de Células B , Linfoma de Células B Grandes Difuso , Transformación Celular Neoplásica/genética , Progresión de la Enfermedad , Humanos , Leucemia Linfocítica Crónica de Células B/genética , Linfoma de Células B Grandes Difuso/genética , Linfoma de Células B Grandes Difuso/patología
15.
Nucleic Acids Res ; 50(W1): W99-W107, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35639735

RESUMEN

We present BioExcel Building Blocks Workflows, a web-based graphical user interface (GUI) offering access to a collection of transversal pre-configured biomolecular simulation workflows assembled with the BioExcel Building Blocks library. Available workflows include Molecular Dynamics setup, protein-ligand docking, trajectory analyses and small molecule parameterization. Workflows can be launched in the platform or downloaded to be run in the users' own premises. Remote launching of long executions to user's available High-Performance computers is possible, only requiring configuration of the appropriate access credentials. The web-based graphical user interface offers a high level of interactivity, with integration with the NGL viewer to visualize and check 3D structures, MDsrv to visualize trajectories, and Plotly to explore 2D plots. The server requires no login but is recommended to store the users' projects and manage sensitive information such as remote credentials. Private projects can be made public and shared with colleagues with a simple URL. The tool will help biomolecular simulation users with the most common and repetitive processes by means of a very intuitive and interactive graphical user interface. The server is accessible at https://mmb.irbbarcelona.org/biobb-wfs.


Asunto(s)
Internet , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Proteínas , Programas Informáticos , Interfaz Usuario-Computador , Flujo de Trabajo , Proteínas/química , Ligandos
16.
Bioinformatics ; 38(12): 3302-3303, 2022 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-35543460

RESUMEN

MOTIVATION: The BioExcel Building Blocks (BioBB) library offers a broad collection of wrappers on top of common biomolecular simulation and bioinformatics tools. The possibility to access the library remotely and programmatically increases its usability, allowing individual and sporadic executions and enabling remote workflows. RESULTS: BioBB REST API extends and complements the BioBB library offering programmatic access to the collection of biomolecular simulation tools included in the BioExcel Building Blocks library. Molecular Dynamics setup, docking, structure modeling, free energy simulations and flexibility analyses are examples of functionalities included in the endpoints collection. All functionalities are accessible through standard REST API calls, voiding the need for tool installation. AVAILABILITY AND IMPLEMENTATION: All the information related to the BioBB REST API endpoints is accessible from https://mmb.irbbarcelona.org/biobb-api/. Links to extended documentation, including OpenAPI endpoints specification and examples, Read-The-Docs documentation and a complete workflow tutorial can be found in the Supplementary Table S1. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Simulación de Dinámica Molecular , Programas Informáticos , Flujo de Trabajo , Biblioteca de Genes
17.
PLoS One ; 16(1): e0245475, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33476328

RESUMEN

INTRODUCTION: Depression, cardiovascular diseases and diabetes are among the major non-communicable diseases, leading to significant disability and mortality worldwide. These diseases may share environmental and genetic determinants associated with multimorbid patterns. Stressful early-life events are among the primary factors associated with the development of mental and physical diseases. However, possible causative mechanisms linking early life stress (ELS) with psycho-cardio-metabolic (PCM) multi-morbidity are not well understood. This prevents a full understanding of causal pathways towards the shared risk of these diseases and the development of coordinated preventive and therapeutic interventions. METHODS AND ANALYSIS: This paper describes the study protocol for EarlyCause, a large-scale and inter-disciplinary research project funded by the European Union's Horizon 2020 research and innovation programme. The project takes advantage of human longitudinal birth cohort data, animal studies and cellular models to test the hypothesis of shared mechanisms and molecular pathways by which ELS shapes an individual's physical and mental health in adulthood. The study will research in detail how ELS converts into biological signals embedded simultaneously or sequentially in the brain, the cardiovascular and metabolic systems. The research will mainly focus on four biological processes including possible alterations of the epigenome, neuroendocrine system, inflammatome, and the gut microbiome. Life-course models will integrate the role of modifying factors as sex, socioeconomics, and lifestyle with the goal to better identify groups at risk as well as inform promising strategies to reverse the possible mechanisms and/or reduce the impact of ELS on multi-morbidity development in high-risk individuals. These strategies will help better manage the impact of multi-morbidity on human health and the associated risk.


Asunto(s)
Enfermedades Cardiovasculares/epidemiología , Enfermedades Cardiovasculares/etiología , Depresión/epidemiología , Depresión/etiología , Diabetes Mellitus/epidemiología , Diabetes Mellitus/etiología , Estrés Psicológico/complicaciones , Adulto , Experiencias Adversas de la Infancia/psicología , Biomarcadores/metabolismo , Enfermedades Cardiovasculares/metabolismo , Enfermedades Cardiovasculares/psicología , Niño , Depresión/metabolismo , Depresión/psicología , Diabetes Mellitus/metabolismo , Diabetes Mellitus/psicología , Ambiente , Humanos , Estudios Longitudinales , Morbilidad , Factores de Riesgo
18.
Open Res Eur ; 1: 80, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-37645200

RESUMEN

Various data sharing platforms are being developed to enhance the sharing of cohort data by addressing the fragmented state of data storage and access systems. However, policy challenges in several domains remain unresolved. The euCanSHare workshop was organized to identify and discuss these challenges and to set the future research agenda. Concerns over the multiplicity and long-term sustainability of platforms, lack of resources, access of commercial parties to medical data, credit and recognition mechanisms in academia and the organization of data access committees are outlined. Within these areas, solutions need to be devised to ensure an optimal functioning of platforms.

19.
J Chem Theory Comput ; 16(10): 6586-6597, 2020 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-32786900

RESUMEN

Modern high-throughput structure-based drug discovery algorithms consider ligand flexibility, but typically with low accuracy, which results in a loss of performance in the derived models. Here we present the bioactive conformational ensemble (BCE) server and its associated database. The server creates conformational ensembles of drug-like ligands and stores them in the BCE database, where a variety of analyses are offered to the user. The workflow implemented in the BCE server combines enhanced sampling molecular dynamics with self-consistent reaction field quantum mechanics (SCRF/QM) calculations. The server automatizes all of the steps to transform one-dimensional (1D) or 2D representation of drugs into 3D molecules, which are then titrated, parametrized, hydrated, and optimized before being subjected to Hamiltonian replica-exchange (HREX) molecular dynamics simulations. Ensembles are collected and subjected to a clustering procedure to derive representative conformers, which are then analyzed at the SCRF/QM level of theory. All structural data are organized in a noSQL database accessible through a graphical interface and in a programmatic manner through a REST API. The server allows the user to define a private workspace and offers a deposition protocol as well as input files for "in house" calculations in those cases where confidentiality is a must. The database and the associated server are available at https://mmb.irbbarcelona.org/BCE.


Asunto(s)
Descubrimiento de Drogas , Preparaciones Farmacéuticas/química , Bases de Datos Factuales , Ensayos Analíticos de Alto Rendimiento , Conformación Molecular , Simulación de Dinámica Molecular , Teoría Cuántica
20.
Nucleic Acids Res ; 48(W1): W538-W545, 2020 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-32374845

RESUMEN

The identification of orthologs-genes in different species which descended from the same gene in their last common ancestor-is a prerequisite for many analyses in comparative genomics and molecular evolution. Numerous algorithms and resources have been conceived to address this problem, but benchmarking and interpreting them is fraught with difficulties (need to compare them on a common input dataset, absence of ground truth, computational cost of calling orthologs). To address this, the Quest for Orthologs consortium maintains a reference set of proteomes and provides a web server for continuous orthology benchmarking (http://orthology.benchmarkservice.org). Furthermore, consensus ortholog calls derived from public benchmark submissions are provided on the Alliance of Genome Resources website, the joint portal of NIH-funded model organism databases.


Asunto(s)
Familia de Multigenes , Proteoma , Programas Informáticos , Animales , Benchmarking , Consenso , Genómica , Humanos , Ratones , Filogenia , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...