RESUMEN
The use of targeted alpha therapy (TAT) for bone cancer is increasing each year. Among the alpha radionuclides, radium [223Ra]Ra+2 is the first one approved for bone cancer metastasis therapy. The development of novel radiopharmaceutical based on [223Ra]Ra+2 is essential to continuously increase the arsenal of new TAT drugs. In this study we have developed, characterized, and in vitro evaluated [223Ra] Ra-nano-hydroxyapatite. The results showed that [223Ra] Ra-nano-hydroxyapatite has a dose-response relationship for osteosarcoma cells and a safety profile for human fibroblast cells, corroborating the application as a radiopharmaceutical.
Asunto(s)
Neoplasias Óseas , Nanoestructuras , Osteosarcoma , Radio (Elemento) , Humanos , Radiofármacos , Radio (Elemento)/química , Radio (Elemento)/uso terapéutico , Neoplasias Óseas/tratamiento farmacológico , Osteosarcoma/tratamiento farmacológicoRESUMEN
Objective: This review addresses the latest advances in research on the role of macrophages in fracture healing, exploring their relationship with failures in bone consolidation and the perspectives for the development of advanced and innovative therapies to promote bone regeneration. Background: The bone can fully restore its form and function after a fracture. However, the regenerative process of fracture healing is complex and is influenced by several factors, including macrophage activity. These cells have been found in the fracture site at all stages of bone regeneration, and their general depletion or the knockdown of receptors that mediate their differentiation, polarization, and/or function result in impaired fracture healing. Methods: The literature search was carried out in the PubMed database, using combinations of the keywords "macrophage", "fracture healing, "bone regeneration", and "bone repair". Articles published within the last years (2017-2022) reporting evidence from in vivo long bone fracture healing experiments were included. Conclusions: Studies published in the last five years on the role of macrophages in fracture healing strengthened the idea that what appears to be essential when it comes to a successful consolidation is the right balance between the M1/M2 populations, which have different but complementary roles in the process. These findings opened promising new avenues for the development of several macrophage-targeted therapies, including the administration of molecules and/or biomaterials intended to regulate macrophage differentiation and polarization, the local transplantation of macrophage precursors, and the use of exosomes to deliver signaling molecules that influence macrophage activities. However, more research is still warranted to better understand the diversity of macrophage phenotypes and their specific roles in each step of fracture healing and to decipher the key molecular mechanisms involved in the in vivo crosstalk between macrophages and other microenvironmental cell types, such as endothelial and skeletal stem/progenitor cells.
RESUMEN
Although several studies assess the biological effects of micro and titanium dioxide nanoparticles (TiO2 NPs), the literature shows controversial results regarding their effect on bone cell behavior. Studies on the effects of nanoparticles on mammalian cells on two-dimensional (2D) cell cultures display several disadvantages, such as changes in cell morphology, function, and metabolism and fewer cell-cell contacts. This highlights the need to explore the effects of TiO2 NPs in more complex 3D environments, to better mimic the bone microenvironment. This study aims to compare the differentiation and mineralized matrix production of human osteoblasts SAOS-2 in a monolayer or 3D models after exposure to different concentrations of TiO2 NPs. Nanoparticles were characterized, and their internalization and effects on the SAOS-2 monolayer and 3D spheroid cells were evaluated with morphological analysis. The mineralization of human osteoblasts upon exposure to TiO2 NPs was evaluated by alizarin red staining, demonstrating a dose-dependent increase in mineralized matrix in human primary osteoblasts and SAOS-2 both in the monolayer and 3D models. Furthermore, our results reveal that, after high exposure to TiO2 NPs, the dose-dependent increase in the bone mineralized matrix in the 3D cells model is higher than in the 2D culture, showing a promising model to test the effect on bone osteointegration.
RESUMEN
BACKGROUND: Nanoparticles (NPs) have gained great importance during the last decades for developing new therapeutics with improved outcomes for biomedical applications due to their nanoscale size, surface properties, loading capacity, controlled drug release, and distribution. Among the carbon-based nanomaterials, one of the most biocompatible forms of graphene is graphene quantum dots (GQDs). GQDs are obtained by converting 2D graphene into zero-dimensional graphene nanosheets. Moreover, very few reports in the literature reported the pharmacokinetic studies proving the safety and effectiveness of GQDs for in vivo applications. OBJECTIVES: This study evaluated the pharmacokinetics of GQDs radiolabeled with 99mTc, administered intravenously, in rodents (Wistar rats) in two conditions: short and long periods, to compare and understand the biological behavior. METHODS: The graphene quantum dots were produced and characterized by RX diffractometry, Raman spectroscopy, and atomic force microscopy. The pharmacokinetic analysis was performed following the radiopharmacokinetics concepts, using radiolabeled graphene quantum dots with technetium 99 metastable (99mTc). The radiolabeling process of the graphene quantum dots with 99mTc was performed by the direct via. RESULTS: The results indicate that the pharmacokinetic analyses with GQDs over a longer period were more accurate. Following a bicompartmental model, the long-time analysis considers each pharmacokinetic phase of drugs into the body. Furthermore, the data demonstrated that short-time analysis could lead to distortions in pharmacokinetic parameters, leading to misinterpretations. CONCLUSION: The evaluation of the pharmacokinetics of GQDs over long periods is more meaningful than the evaluation over short periods.
Asunto(s)
Grafito , Nanopartículas , Nanoestructuras , Puntos Cuánticos , Animales , Ratas , Puntos Cuánticos/química , Grafito/química , Ratas WistarRESUMEN
Alpha and beta particulate radiation are used for non-treated neoplasia, due to their ability to reach and remain in tumor sites. Radium-223 (223Ra), an alpha emitter, promotes localized cytotoxic effects, while radioactive gold (198Au), beta-type energy, reduces radiation in the surrounding tissues. Nanotechnology, including several radioactive nanoparticles, can be safely and effectively used in cancer treatment. In this context, this study aims to analyze the antitumoral effects of [223Ra]Ra nanomicelles co-loaded with radioactive gold nanoparticles ([198Au]AuNPs). For this, we synthesize and characterize nanomicelles, as well as analyze some parameters, such as particle size, radioactivity emission, dynamic light scattering, and microscopic atomic force. [223Ra]Ra nanomicelles co-loaded with [198Au]AuNPs, with simultaneous alpha and beta emission, showed no instability, a mean particle size of 296 nm, and a PDI of 0.201 (±0.096). Furthermore, nanomicelles were tested in an in vitro cytotoxicity assay. We observed a significant increase in tumor cell death using combined alpha and beta therapy in the same formulation, compared with these components used alone. Together, these results show, for the first time, an efficient association between alpha and beta therapies, which could become a promising tool in the control of tumor progression.
RESUMEN
Rheumatoid arthritis (RA) is the most common inflammatory rheumatic disease, affecting almost 1% of the world population. It is a long-lasting autoimmune disease, which mainly affects the joints causing inflammation and swelling of the synovial joint. RA has a significant impact on the ability to perform daily activities including simple work and household chores. Nonetheless, due to the long periods of pain and the continuous use of anti-inflammatory drugs, RA can debilitate the quality of life and increases mortality. Current therapeutic approaches to treat RA aim to achieve prolonged activity and early and persistent remission of the disease, with the gradual adoption of different drugs available. In this study, we developed a novel hydroxychloroquine and methotrexate co-loaded Pluronic® F-127 nanomicelle and evaluated its therapeutic effects against RA. Our results showed that drug-loaded nanomicelles were capable of modulating the inflammatory process of RA and reducing osteoclastogenesis, edema, and cell migration to the joint. Overall, compared to the free drugs, the drug-loaded nanomicelles showed a 2-fold higher therapeutic effect.
Asunto(s)
Artritis Reumatoide , Metotrexato , Artritis Reumatoide/tratamiento farmacológico , Humanos , Hidroxicloroquina/farmacología , Articulaciones , Metotrexato/farmacología , Calidad de VidaRESUMEN
The role of apoptosis-associated speck-like protein containing a caspase-1 recruitment domain (ASC) in bone healing remains to be understood. To address this issue, we investigated the requirement of inflammasome-related genes in response to bone morphogenetic protein 7 (BMP7)-induced osteoblast differentiation in vitro. To validate the importance of ASC on osteogenesis, we subjected wild-type (WT) and ASC knockout C57BL/6 mice (ASC KO) to tibia defect to evaluate the bone healing process (up to 28 days). Our in vitro data showed that there is an involvement of ASC during BMP7-induced osteoblast differentiation, concomitant to osteogenic biomarker expression. Indeed, primary osteogenic cells from ASC KO presented a lower osteogenic profile than those obtained from WT mice. To validate this hypothesis, we evaluated the bone healing process of tibia defects on both WT and ASC KO mice genotypes and the ASC KO mice were not able to fully heal tibia defects up to 28 days, whereas WT tibia defects presented a higher bone de novo volume at this stage, evidencing ASC as an important molecule during osteogenic phenotype. In addition, we have shown a higher involvement of runt-related transcription factor 2 in WT sections during bone repair, as well as circulating bone alkaline phosphatase isoform when both were compared with ASC KO mice behavior. Altogether, our results showed for the first time the involvement of inflammasome during osteoblast differentiation and osteogenesis, which opens new avenues to understand the pathways involved in bone healing.
Asunto(s)
Proteínas Adaptadoras de Señalización CARD/metabolismo , Diferenciación Celular , Curación de Fractura , Osteoblastos/metabolismo , Osteogénesis , Tibia/metabolismo , Fracturas de la Tibia/metabolismo , Células 3T3 , Animales , Proteína Morfogenética Ósea 7/farmacología , Proteínas Adaptadoras de Señalización CARD/deficiencia , Proteínas Adaptadoras de Señalización CARD/genética , Diferenciación Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Femenino , Inflamasomas/efectos de los fármacos , Inflamasomas/metabolismo , Mediadores de Inflamación/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Osteoblastos/efectos de los fármacos , Osteoblastos/patología , Osteogénesis/efectos de los fármacos , Transducción de Señal , Tibia/patología , Tibia/fisiopatología , Fracturas de la Tibia/genética , Fracturas de la Tibia/patología , Fracturas de la Tibia/fisiopatología , Factores de TiempoRESUMEN
While titanium is the metal of choice for most prosthetics and inner body devices due to its superior biocompatibility, the discovery of Ti-containing species in the adjacent tissue as a result of wear and corrosion has been associated with autoimmune diseases and premature implant failures. Here, we utilize the in situ liquid cell transmission electron microscopy (TEM) in a liquid flow holder and graphene liquid cells (GLCs) to investigate, for the first time, the in situ nano-bio interactions between titanium dioxide nanoparticles and biological medium. This imaging and spectroscopy methodology showed the process of formation of an ionic and proteic bio-camouflage surrounding Ti dioxide (anatase) nanoparticles that facilitates their internalization by bone cells. The in situ understanding of the mechanisms of the formation of the bio-camouflage of anatase nanoparticles may contribute to the definition of strategies aimed at the manipulation of these NPs for bone regenerative purposes.