Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Philos Trans R Soc Lond B Biol Sci ; 378(1867): 20210090, 2023 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-36373930

RESUMEN

Current policy is driving renewed impetus to restore forests to return ecological function, protect species, sequester carbon and secure livelihoods. Here we assess the contribution of tree planting to ecosystem restoration in tropical and sub-tropical Asia; we synthesize evidence on mortality and growth of planted trees at 176 sites and assess structural and biodiversity recovery of co-located actively restored and naturally regenerating forest plots. Mean mortality of planted trees was 18% 1 year after planting, increasing to 44% after 5 years. Mortality varied strongly by site and was typically ca 20% higher in open areas than degraded forest, with height at planting positively affecting survival. Size-standardized growth rates were negatively related to species-level wood density in degraded forest and plantations enrichment settings. Based on community-level data from 11 landscapes, active restoration resulted in faster accumulation of tree basal area and structural properties were closer to old-growth reference sites, relative to natural regeneration, but tree species richness did not differ. High variability in outcomes across sites indicates that planting for restoration is potentially rewarding but risky and context-dependent. Restoration projects must prepare for and manage commonly occurring challenges and align with efforts to protect and reconnect remaining forest areas. The abstract of this article is available in Bahasa Indonesia in the electronic supplementary material. This article is part of the theme issue 'Understanding forest landscape restoration: reinforcing scientific foundations for the UN Decade on Ecosystem Restoration'.


Asunto(s)
Ecosistema , Clima Tropical , Biodiversidad , Plantas , Asia
2.
PLoS One ; 6(11): e25931, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22087218

RESUMEN

Large carnivores living in tropical rainforests are under immense pressure from the rapid conversion of their habitat. In response, millions of dollars are spent on conserving these species. However, the cost-effectiveness of such investments is poorly understood and this is largely because the requisite population estimates are difficult to achieve at appropriate spatial scales for these secretive species. Here, we apply a robust detection/non-detection sampling technique to produce the first reliable population metric (occupancy) for a critically endangered large carnivore; the Sumatran tiger (Panthera tigris sumatrae). From 2007-2009, seven landscapes were surveyed through 13,511 km of transects in 394 grid cells (17×17 km). Tiger sign was detected in 206 cells, producing a naive estimate of 0.52. However, after controlling for an unequal detection probability (where p = 0.13±0.017; ±S.E.), the estimated tiger occupancy was 0.72±0.048. Whilst the Sumatra-wide survey results gives cause for optimism, a significant negative correlation between occupancy and recent deforestation was found. For example, the Northern Riau landscape had an average deforestation rate of 9.8%/yr and by far the lowest occupancy (0.33±0.055). Our results highlight the key tiger areas in need of protection and have led to one area (Leuser-Ulu Masen) being upgraded as a 'global priority' for wild tiger conservation. However, Sumatra has one of the highest global deforestation rates and the two largest tiger landscapes identified in this study will become highly fragmented if their respective proposed roads networks are approved. Thus, it is vital that the Indonesian government tackles these threats, e.g. through improved land-use planning, if it is to succeed in meeting its ambitious National Tiger Recovery Plan targets of doubling the number of Sumatran tigers by 2022.


Asunto(s)
Ecosistema , Especies en Peligro de Extinción/tendencias , Cadena Alimentaria , Tigres , Animales , Conservación de los Recursos Naturales , Geografía , Indonesia , Población , Árboles
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...