Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Vet Sci ; 11(9)2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39330794

RESUMEN

Chalkbrood is a mycological brood disease of the Western honey bee (Apis mellifera), caused by the fungus Ascosphaera apis. The aim of this study was the investigation of the pathology of artificially reared Apis mellifera larvae, experimentally infected with A. apis spores (1.0 × 103 spores/larva). Non-infected larvae served as control. Five living larvae and every dead larva were collected daily (day 1-7 p.i.). All larvae were macroscopically measured, photographed, formalin-fixed, and histologically processed (hematoxylin-eosin stain, Grocott silvering). Histological sections were digitized, and the size of the larvae was measured (mouth-after length, area) and statistically analyzed. Twenty-six larvae from the collected larvae (n = 64; 23 dead, 3 alive) showed histological signs of infection from 3 d p.i. onwards. The dead larvae showed macroscopically white/brown deposits, indistinct segmentation, and a lack of body elongation. Infected larvae were significantly smaller than the controls on days 3 p.i. (p < 0.05), 4 p.i. (p < 0.001), and 6 p.i. (p < 0.05). The early time of death, the low number of transitional stages, and the strong penetration of the larval carcass with fungal mycelium indicate a rapid and fulminant infection process, which is probably relevant for spreading the disease within the colony.

2.
Commun Biol ; 6(1): 229, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36859713

RESUMEN

The Western honey bee Apis mellifera, which provides about 90% of commercial pollination, is under threat from diverse abiotic and biotic factors. The ectoparasitic mite Varroa destructor vectoring deformed wing virus (DWV) has been identified as the main biotic contributor to honey bee colony losses worldwide, while the role of the microsporidium Nosema ceranae is still controversially discussed. In an attempt to solve this controversy, we statistically analyzed a unique data set on honey bee colony health collected from a cohort of honey bee colonies over 15 years and comprising more than 3000 data sets on mite infestation levels, Nosema spp. infections, and winter losses. Multivariate statistical analysis confirms that V. destructor is the major cause of colony winter losses. Although N. ceranae infections are also statistically significantly correlated with colony losses, determination of the effect size reveals that N. ceranae infections are of no or low biological relevance.


Asunto(s)
Nosema , Animales , Abejas , Análisis Multivariante , Polinización
3.
Vet Sci ; 10(2)2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36851407

RESUMEN

American Foulbrood (AFB) of honey bees caused by the spore-forming bacterium Paenibacillus larvae is a notifiable epizootic in most countries. Authorities often consider a rigorous eradication policy the only sustainable control measure. However, early diagnosis of infected but not yet diseased colonies opens up the possibility of ridding these colonies of P. larvae spores by the shook swarm method, thus preventing colony destruction by AFB or official control orders. Therefore, surveillance of bee colonies for P. larvae infection followed by appropriate sanitary measures is a very important intervention to control AFB. For the detection of P. larvae spores in infected colonies, samples of brood comb honey, adult bees, or hive debris are commonly used. We here present our results from a comparative study on the suitability of these matrices in reliably and correctly detecting P. larvae spores contained in these matrices. Based on the sensitivity and limit of detection of P. larvae spores in samples from hive debris, adult bees, and brood comb honey, we conclude that the latter two are equally well-suited for AFB surveillance programs. Hive debris samples should only be used when it is not possible to collect honey or adult bee samples from brood combs.

4.
Nat Commun ; 13(1): 2349, 2022 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-35487884

RESUMEN

Paenibacillus larvae, the causative agent of the devastating honey-bee disease American Foulbrood, produces the cationic polyketide-peptide hybrid paenilamicin that displays antibacterial and antifungal activity. Its biosynthetic gene cluster contains a gene coding for the N-acetyltransferase PamZ. We show that PamZ acts as self-resistance factor in Paenibacillus larvae by deactivation of paenilamicin. Using tandem mass spectrometry, nuclear magnetic resonance spectroscopy and synthetic diastereomers, we identified the N-terminal amino group of the agmatinamic acid as the N-acetylation site. These findings highlight the pharmacophore region of paenilamicin, which we very recently identified as a ribosome inhibitor. Here, we further determined the crystal structure of PamZ:acetyl-CoA complex at 1.34 Å resolution. An unusual tandem-domain architecture provides a well-defined substrate-binding groove decorated with negatively-charged residues to specifically attract the cationic paenilamicin. Our results will help to understand the mode of action of paenilamicin and its role in pathogenicity of Paenibacillus larvae to fight American Foulbrood.


Asunto(s)
Paenibacillus , Policétidos , Animales , Antibacterianos/química , Antibacterianos/farmacología , Abejas , Farmacorresistencia Microbiana , Larva , Paenibacillus/genética , Policétidos/farmacología , Estados Unidos
5.
Curr Opin Insect Sci ; 50: 100871, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34999035

RESUMEN

The bipartite interactions between insect hosts and their bacterial gut microbiota, or their bacterial pathogens, are empirically and theoretically well-explored. However, direct, and indirect tripartite interactions will also likely occur inside a host. These interactions will almost certainly affect the trajectory of pathogen virulence evolution, an area that is currently under researched. The interactions within tripartite associations can be competitive, that is, exploitative-competition, interference-competition or apparent-competition. Competitive interactions will be significantly influenced by non-competitive effects, for example, immunopathology, immunosuppression, and microbiota-mediated tolerance. Considering a combination of these interactions and effects, will enable an increased understanding of the evolution of pathogen virulence. This new perspective allows us to identify several novel research questions, which we hope will be a useful framework for future research.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Animales , Bacterias , Insectos , Virulencia
6.
Virol J ; 19(1): 12, 2022 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-35033134

RESUMEN

In 1977, a sample of diseased adult honeybees (Apis mellifera) from Egypt was found to contain large amounts of a previously unknown virus, Egypt bee virus, which was subsequently shown to be serologically related to deformed wing virus (DWV). By sequencing the original isolate, we demonstrate that Egypt bee virus is in fact a fourth unique, major variant of DWV (DWV-D): more closely related to DWV-C than to either DWV-A or DWV-B. DWV-A and DWV-B are the most common DWV variants worldwide due to their close relationship and transmission by Varroa destructor. However, we could not find any trace of DWV-D in several hundred RNA sequencing libraries from a worldwide selection of honeybee, varroa and bumblebee samples. This means that DWV-D has either become extinct, been replaced by other DWV variants better adapted to varroa-mediated transmission, or persists only in a narrow geographic or host range, isolated from common bee and beekeeping trade routes.


Asunto(s)
Virus ARN , Varroidae , Animales , Abejas , Virus ADN , Egipto , Virus ARN/genética
7.
J Am Chem Soc ; 144(1): 288-296, 2022 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-34968060

RESUMEN

Paenilamicins are a group of complex polycationic peptide secondary metabolites with antibacterial and antifungal activities produced by the devastating honey bee brood pathogen Paenibacillus larvae causing the lethal brood disease American Foulbrood (AFB). Here, we report the convergent total synthesis and structural revision of paenilamicin B2. Specific stereoisomers of paenilamicin B2 were synthesized for unambiguous confirmation of the natural product structure and for evaluation of biological activities. These studies revealed the N-terminal fragment of paenilamicin as an important pharmacophore. Infection assays using bee larvae and the insect pathogen Bacillus thuringiensis demonstrated that paenilamicins outcompete bacterial competitors in the ecological niche of P. larvae. Finally, we show first data that classifies paenilamicins as potential ribosome inhibitors. Hence, our synthesis route is a further step for understanding the pathogenicity of P. larvae and for thorough structure-activity-relationship as well as mode-of-action studies in the near future.


Asunto(s)
Paenibacillus larvae
8.
Toxins (Basel) ; 13(9)2021 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-34564612

RESUMEN

American Foulbrood, caused by Paenibacillus larvae, is the most devastating bacterial honey bee brood disease. Finding a treatment against American Foulbrood would be a huge breakthrough in the battle against the disease. Recently, small molecule inhibitors against virulence factors have been suggested as candidates for the development of anti-virulence strategies against bacterial infections. We therefore screened an in-house library of synthetic small molecules and a library of flavonoid natural products, identifying the synthetic compound M3 and two natural, plant-derived small molecules, Acacetin and Baicalein, as putative inhibitors of the recently identified P. larvae toxin Plx2A. All three inhibitors were potent in in vitro enzyme activity assays and two compounds were shown to protect insect cells against Plx2A intoxication. However, when tested in exposure bioassays with honey bee larvae, no effect on mortality could be observed for the synthetic or the plant-derived inhibitors, thus suggesting that the pathogenesis strategies of P. larvae are likely to be too complex to be disarmed in an anti-virulence strategy aimed at a single virulence factor. Our study also underscores the importance of not only testing substances in in vitro or cell culture assays, but also testing the compounds in P. larvae-infected honey bee larvae.


Asunto(s)
ADP Ribosa Transferasas/metabolismo , Proteínas Bacterianas/metabolismo , Toxinas Bacterianas/metabolismo , Abejas/microbiología , Paenibacillus larvae/patogenicidad , Factores de Virulencia/metabolismo , Virulencia/efectos de los fármacos , Animales , Interacciones Huésped-Patógeno , Bibliotecas de Moléculas Pequeñas
9.
Toxins (Basel) ; 13(2)2021 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-33669183

RESUMEN

The Gram-positive, spore-forming bacterium Paenibacillus larvae is the etiological agent of American Foulbrood, a highly contagious and often fatal honey bee brood disease. The species P. larvae comprises five so-called ERIC-genotypes which differ in virulence and pathogenesis strategies. In the past two decades, the identification and characterization of several P. larvae virulence factors have led to considerable progress in understanding the molecular basis of pathogen-host-interactions during P. larvae infections. Among these virulence factors are three ADP-ribosylating AB-toxins, Plx1, Plx2, and C3larvin. Plx1 is a phage-born toxin highly homologous to the pierisin-like AB-toxins expressed by the whites-and-yellows family Pieridae (Lepidoptera, Insecta) and to scabin expressed by the plant pathogen Streptomyces scabiei. These toxins ADP-ribosylate DNA and thus induce apoptosis. While the presumed cellular target of Plx1 still awaits final experimental proof, the classification of the A subunits of the binary AB-toxins Plx2 and C3larvin as typical C3-like toxins, which ADP-ribosylate Rho-proteins, has been confirmed experimentally. Normally, C3-exoenzymes do not occur together with a B subunit partner, but as single domain toxins. Interestingly, the B subunits of the two P. larvae C3-like toxins are homologous to the B-subunits of C2-like toxins with striking structural similarity to the PA-63 protomer of Bacillus anthracis.


Asunto(s)
ADP Ribosa Transferasas/metabolismo , ADP-Ribosilación , Proteínas Bacterianas/metabolismo , Toxinas Bacterianas/metabolismo , Abejas/microbiología , Infecciones por Bacterias Grampositivas/enzimología , Paenibacillus/enzimología , ADP Ribosa Transferasas/química , Animales , Apoptosis , Proteínas Bacterianas/química , Toxinas Bacterianas/química , Apicultura , Abejas/metabolismo , Infecciones por Bacterias Grampositivas/microbiología , Interacciones Huésped-Patógeno , Paenibacillus/patogenicidad , Conformación Proteica , Relación Estructura-Actividad , Virulencia , Factores de Virulencia/metabolismo
10.
J Virol ; 95(5)2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33298545

RESUMEN

Deformed wing virus (DWV) is a bee pathogenic, single- and positive-stranded RNA virus that has been involved in severe honey bee colony losses worldwide. DWV, when transmitted horizontally or vertically from bee to bee, causes mainly covert infections not associated with any visible symptoms or damage. Overt infections occur after vectorial transmission of DWV to the developing bee pupae through the ectoparasitic mite Varroa destructor Symptoms of overt infections are pupal death, bees emerging with deformed wings and shortened abdomens, or cognitive impairment due to brain infection. So far, three variants of DWV, DWV-A, DWV-B, and DWV-C, have been described. While it is widely accepted that V. destructor acts as vector of DWV, the question of whether the mite only functions as a mechanical vector or whether DWV can infect the mite thus using it as a biological vector is hotly debated, because in the literature data can be found that support both hypotheses. In order to settle this scientific dispute, we analyzed putatively DWV-infected mites with a newly established protocol for fluorescence-in situ-hybridization of mites and demonstrated DWV-specific signals inside mite cells. We provide compelling and direct evidence that DWV-B infects the intestinal epithelium and the salivary glands of V. destructor In contrast, no evidence for DWV-A infecting mite cells was found. Our data are key to understanding the pathobiology of DWV, the mite's role as a biological DWV vector and the quasispecies dynamics of this RNA virus when switching between insect and arachnid host species.IMPORTANCE Deformed wing virus (DWV) is a bee pathogenic, originally rather benign, single- and positive-stranded RNA virus. Only the vectorial transmission of this virus to honey bees by the ectoparasitic mite Varroa destructor leads to fatal or symptomatic infections of individuals, usually followed by collapse of the entire colony. Studies on whether the mite only acts as a mechanical virus vector or whether DWV can infect the mite and thus use it as a biological vector have led to disparate results. In our study using fluorescence-in situ-hybridization we provide compelling and direct evidence that at least the DWV-B variant infects the gut epithelium and the salivary glands of V. destructor Hence, the host range of DWV includes both, bees (Insecta) and mites (Arachnida). Our data contribute to a better understanding of the triangular relationship between honey bees, V. destructor and DWV and the evolution of virulence in this viral bee pathogen.

11.
Parasitol Res ; 119(12): 3947-3956, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33043420

RESUMEN

Nosema ceranae is a ubiquitous microsporidian pathogen infecting the midgut of honey bees. The infection causes bee nosemosis, a disease associated with malnutrition, dysentery, and lethargic behavior, and results in considerable economic losses in apiculture. The use of a rapid, sensitive, and inexpensive DNA-based molecular detection method assists in the surveillance and eventual control of this pathogen. To this end, a loop-mediated isothermal amplification (LAMP) assay targeting the single-copy gene encoding the polar tube protein 3 (PTP3) has been developed. Genomic DNA of N. ceranae-infected forager bees sampled from distant geographic regions could be reliably amplified using the established LAMP assay. The N. ceranae-LAMP showed higher sensitivity than a classical reference PCR (98.6 vs 95.7%), when both approaches were applied to the detection of N. ceranae. LAMP detected a ten-fold lower infection rate than the reference PCR (1 pg vs 10 pg genomic DNA, respectively). In addition, we show highly specific and sensitive detection of N. ceranae from spore preparations in a direct LAMP format. No cross-reactions with genomic DNA and/or spores from N. apis, often co-infecting A. mellifera, or from N. bombi, infecting bumble bees, were observed. This low-cost and time-saving molecular detection method can be easily applied in simple laboratory settings, facilitating a rapid detection of N. ceranae in honey bees in epidemiological studies, surveillance and control, as well as evaluation of therapeutic measures against nosemosis.


Asunto(s)
Abejas/parasitología , Proteínas Fúngicas/genética , Técnicas de Diagnóstico Molecular/métodos , Nosema/genética , Técnicas de Amplificación de Ácido Nucleico/métodos , Animales , Apicultura/economía , ADN de Hongos/genética , Microsporidiosis/diagnóstico , Nosema/aislamiento & purificación , Reacción en Cadena de la Polimerasa , Esporas Fúngicas/genética
12.
Appl Environ Microbiol ; 86(12)2020 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-32276975

RESUMEN

Pollination provided by managed honey bees as well as by all the wild bee species is a crucial ecosystem service contributing to the conservation of biodiversity and human food security. Therefore, it is not only the health status of honey bees but also the health status of wild bees that concerns us all. In this context, recent field studies suggesting interspecies transmission of the microsporidium parasite Nosema ceranae from honey bees (Apis mellifera) to bumblebees (Bombus spp.) were alarming. On the basis of these studies, N. ceranae was identified as an emerging infectious agent (EIA) of bumblebees, although knowledge of its impact on its new host was still elusive. In order to investigate the infectivity, virulence, and pathogenesis of N. ceranae infections in bumblebees, we performed controlled laboratory exposure bioassays with Bombus terrestris by orally inoculating the bees with infectious N. ceranae spores. We comprehensively analyzed the infection status of the bees via microscopic analysis of squash preparations, PCR-based detection of N. ceranae DNA, histology of Giemsa-stained tissue sections, and species-specific fluorescence in situ hybridization. We did not find any evidence for a true infection of bumblebees by N. ceranae Through a series of experiments, we ruled out the possibility that spore infectivity, spore dosage, incubation time, or age and source of the bumblebees caused these negative results. Instead, our results clearly demonstrate that no infection and production of new spores took place in bumblebees after they ingested N. ceranae spores in our experiments. Thus, our results question the classification of N. ceranae as an emerging infectious agent for bumblebees.IMPORTANCE Emerging infectious diseases (EIDs) pose a major health threat to both humans and animals. EIDs include, for instance, those that have spread into hitherto naive populations. Recently, the honey bee-specific microsporidium Nosema ceranae has been detected by molecular methods in field samples of bumblebees. This detection of N. ceranae DNA in bumblebees led to the assumption that N. ceranae infections represent an EID of bumblebees and resulted in speculations on the role of this pathogen in driving bumblebee declines. In order to address the issue of whether N. ceranae is an emerging infectious agent for bumblebees, we experimentally analyzed host susceptibility and pathogen reproduction in this new host-pathogen interaction. Surprisingly, we did not find any evidence for a true infection of Bombus terrestris by N. ceranae, questioning the classification of N. ceranae infections as EIDs of bumblebees and demonstrating that detection of microsporidian DNA does not equal detection of microsporidian infection.


Asunto(s)
Abejas/parasitología , Interacciones Huésped-Patógeno , Nosema/fisiología , Animales , Tracto Gastrointestinal/parasitología , Especificidad de la Especie
13.
Biosci Rep ; 40(1)2020 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-31844879

RESUMEN

C3larvinA is a putative virulence factor produced by Paenibacillus larvae enterobacterial-repetitive-intergenic-consensus (ERIC) III/IV (strain 11-8051). Biochemical, functional and structural analyses of C3larvinA revealed that it belongs to the C3-like mono-ADP-ribosylating toxin subgroup. Mammalian RhoA was the target substrate for its transferase activity suggesting that it may be the biological target of C3larvinA. The kinetic parameters of the NAD+ substrate for the transferase (KM = 75 ± 10 µM) and glycohydrolase (GH) (KM = 107 ± 20 µM) reactions were typical for a C3-like bacterial toxin, including the Plx2A virulence factor from Paenibacillus larvae ERIC I. Upon cytoplasmic expression in yeast, C3larvinA caused a growth-defective phenotype indicating that it is an active C3-like toxin and is cytotoxic to eukaryotic cells. The catalytic variant of the Q187-X-E189 motif in C3larvinA showed no cytotoxicity toward yeast confirming that the cytotoxicity of this factor depends on its enzymatic activity. A homology consensus model of C3larvinA with NAD+ substrate was built on the structure of Plx2A, provided additional confirmation that C3larvinA is a member of the C3-like mono-ADP-ribosylating toxin subgroup. A homology model of C3larvinA with NADH and RhoA was built on the structure of the C3cer-NADH-RhoA complex which provided further evidence that C3larvinA is a C3-like toxin that shares an identical catalytic mechanism with C3cer from Bacillus cereus. C3larvinA induced actin cytoskeleton reorganization in murine macrophages, whereas in insect cells, vacuolization and bi-nucleated cells were observed. These cellular effects are consistent with C3larvinA disrupting RhoA function by covalent modification that is shared among C3-like bacterial toxins.


Asunto(s)
ADP Ribosa Transferasas/metabolismo , Toxinas Bacterianas/metabolismo , Abejas/microbiología , Paenibacillus larvae/enzimología , Factores de Virulencia/metabolismo , Proteína de Unión al GTP rhoA/metabolismo , ADP Ribosa Transferasas/química , ADP Ribosa Transferasas/genética , Citoesqueleto de Actina/enzimología , Animales , Toxinas Bacterianas/química , Toxinas Bacterianas/genética , Interacciones Huésped-Patógeno , Cinética , Macrófagos/enzimología , Mutación , Paenibacillus larvae/genética , Paenibacillus larvae/patogenicidad , Conformación Proteica , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Células Sf9 , Spodoptera , Relación Estructura-Actividad , Especificidad por Sustrato , Virulencia , Factores de Virulencia/química , Factores de Virulencia/genética , Proteína de Unión al GTP rhoA/química
14.
Environ Microbiol ; 21(8): 3091-3106, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31187922

RESUMEN

Paenibacillus larvae is the causative agent of the notifiable epizootic American foulbrood, a fatal bacterial disease of honey bee larvae. The species P. larvae has been classified into four differentially virulent and prevalent genotypes (ERIC I-IV), which also differ in their virulence factor equipment. Recently, a novel P. larvae toxin, the C3-like C3larvin, has been described. Genome analysis now revealed that the C3larvin gene is actually a part of a toxin locus encompassing two genes encoding a binary AB toxin with the A subunit being C3larvin (C3larvinA) and a putative B subunit (C3larvinB) encoded by the second gene. Sequence and structural analyses demonstrated that C3larvinB is a homologue of the Bacillus anthracis protective antigen (PA), the B subunit of anthrax toxin. The C3larvinAB toxin locus was interrupted by point mutations in all analysed P. larvae ERIC I and ERIC II strains. Only one P. larvae ERIC III/IV strain harboured an uninterrupted toxin locus comprising full-length genes for C3larvinA and B. Exposure bioassays did not substantiate a role as virulence factor for C3larvinAB in P. larvae ERIC I/II. However, the PA homologue C3larvinB had an influence on the virulence of the unique P. larvae strain expressing the functional C3larvinAB locus.


Asunto(s)
Toxinas Bacterianas/metabolismo , Abejas/microbiología , Paenibacillus larvae/metabolismo , Animales , Toxinas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica/fisiología , Genotipo , Larva/microbiología , Estados Unidos , Virulencia/genética , Factores de Virulencia/genética
15.
Environ Microbiol ; 20(12): 4612-4628, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30452113

RESUMEN

The health of the Western honey bee is threatened by a global epidemic of deformed wing virus (DWV) infections driven by the ectoparasitic mite Varroa destructor acting as mechanical and biological virus vector. Three different variants of DWV, DWV-A, -B and -C exist. Virulence differences between these variants and their relation to V. destructor are still controversially discussed. We performed laboratory experiments to analyze the virulence of DWV directly isolated from crippled bees (DWVP0 ) or after one additional passage in bee pupae (DWVP1 ). We demonstrated that DWVP0 was more virulent than DWVP1 for pupae, when pupal mortality was taken as virulence marker, and for adult bees, when neurotropism and cognitive impairment were taken as virulence markers. Phylogenetic analysis supported that DWV exists as quasispecies and showed that DWVP0 clustered with DWV-B and DWVP1 with DWV-A when the phylogeny was based on the master sequences of the RNA-dependent RNA polymerase but not so when it was based on the VP3 region master sequences. We propose that switching of DWV between the bee and the mite host is accompanied by changes in viral sequence, tissue tropism and virulence and that the RNA-dependent RNA polymerase is involved in determining host range and virulence.


Asunto(s)
Abejas/virología , Evolución Biológica , Virus ARN/patogenicidad , Animales , Femenino , Filogenia , Pupa/virología , Virus ARN/clasificación , Varroidae/virología , Virulencia
16.
Sci Rep ; 8(1): 8840, 2018 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-29892084

RESUMEN

American Foulbrood is a worldwide distributed, fatal disease of the brood of the Western honey bee (Apis mellifera). The causative agent of this fatal brood disease is the Gram-positive, spore-forming bacterium Paenibacillus larvae, which can be classified into four different genotypes (ERIC I-IV), with ERIC I and II being the ones isolated from contemporary AFB outbreaks. P. larvae is a peritrichously flagellated bacterium and, hence, we hypothesized that P. larvae is capable of coordinated and cooperative multicellular behaviors like swarming motility and biofilm formation. In order to analyze these behaviors of P. larvae, we firstly established appropriate functional assays. Using these assays we demonstrated that P. larvae ERIC II, but not P. larvae ERIC I, was capable of swarming. Swarming motility was hampered in a P. larvae ERIC II-mutant lacking production of paenilarvin, an iturin-like lipopeptide exclusively expressed by this genotype. Both genotypes were able to form free floating biofilm aggregates loosely attached to the walls of the culture wells. Visualizing the biofilms by Congo red and thioflavin S staining suggested structural differences between the biofilms formed. Biofilm formation was shown to be independent from paenilarvin production because the paenilarvin deficient mutant was comparably able to form a biofilm.


Asunto(s)
Abejas/microbiología , Biopelículas/crecimiento & desarrollo , Locomoción , Paenibacillus larvae/fisiología , Animales , Técnicas Bacteriológicas , Genotipo , Infecciones por Bacterias Grampositivas/microbiología , Infecciones por Bacterias Grampositivas/veterinaria , Lipopéptidos/metabolismo , Paenibacillus larvae/clasificación , Paenibacillus larvae/genética , Coloración y Etiquetado
17.
Curr Opin Insect Sci ; 26: 89-96, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29764667

RESUMEN

Pollination is an indispensable ecosystem service provided by many insects, especially by wild and managed bee species. Hence, reports on large scale honey bee colony losses and on population declines of many wild bees were alarming and resulted in increased awareness of the importance of bee health and increased interest in bee pathogens. To serve this interest, this review will give a comprehensive overview on bacterial bee pathogens by covering not only the famous pathogens (Paenibacillus larvae, Melissococcus plutonius), but also the orphan pathogens which have largely been neglected by the scientific community so far (spiroplasmas) and the pathogens which were only recently discovered as being pathogenic to bees (Serratia marcescens, Lysinibacillus sphaericus).


Asunto(s)
Bacterias , Abejas/microbiología , Animales , Abejas/crecimiento & desarrollo , Larva/microbiología
19.
Environ Microbiol ; 19(12): 5100-5116, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29124866

RESUMEN

The toxin Plx2A is an important virulence factor of Paenibacillus larvae, the etiological agent of American Foulbrood, the most destructive bacterial disease of honey bees. Biochemical and functional analyses as well as the crystal structure of Plx2A revealed that it belongs to the C3 mono-ADP-ribosylating toxin subgroup. RhoA was identified as the cellular target of Plx2A activity. The kinetic parameters (KM , kcat ) were established for both the transferase and glycohydrolase reactions. When expressed in yeast, Plx2A was cytotoxic for eukaryotic cells and catalytic variants confirmed that the cytotoxicity of Plx2A depends on its enzymatic activity. The crystal structure of Plx2A was solved to 1.65 Å and confirmed that it is a C3-like toxin, although with a new molecular twist, it has a B-domain. A molecular model of the 'active' enzyme conformation in complex with NAD+ was produced by computational methods based on the recent structure of C3bot1 with RhoA. In murine macrophages, Plx2A induced actin cytoskeleton reorganization while in insect cells, vacuolization and the occurrence of bi-nucleated cells was observed. The latter is indicative of an inhibition of cytokinesis. All these cellular effects are consistent with Plx2A inhibiting the activity of RhoA by covalent modification.


Asunto(s)
ADP Ribosa Transferasas/metabolismo , Proteínas Bacterianas/metabolismo , Toxinas Bacterianas/metabolismo , Abejas/microbiología , Macrófagos/patología , Paenibacillus larvae/patogenicidad , Proteína de Unión al GTP rhoA/antagonistas & inhibidores , Animales , Catálisis , Línea Celular , Ratones , Modelos Moleculares , Estructura Secundaria de Proteína , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Factores de Virulencia/metabolismo
20.
Artículo en Inglés | MEDLINE | ID: mdl-28730143

RESUMEN

The Western honey bee (Apis mellifera) is widely used as commercial pollinator in worldwide agriculture and, therefore, plays an important role in global food security. Among the parasites and pathogens threatening health and survival of honey bees are two species of microsporidia, Nosema apis and Nosema ceranae. Nosema ceranae is considered an emerging pathogen of the Western honey bee. Reports on the spread of N. ceranae suggested that this presumably highly virulent species is replacing its more benign congener N. apis in the global A. mellifera population. We here present a 12 year longitudinal cohort study on the prevalence of N. apis and N. ceranae in Northeast Germany. Between 2005 and 2016, a cohort of about 230 honey bee colonies originating from 23 apiaries was sampled twice a year (spring and autumn) resulting in a total of 5,600 bee samples which were subjected to microscopic and molecular analysis for determining the presence of infections with N. apis or/and N. ceranae. Throughout the entire study period, both N. apis- and N. ceranae-infections could be diagnosed within the cohort. Logistic regression analysis of the prevalence data demonstrated a significant increase of N. ceranae-infections over the last 12 years, both in autumn (reflecting the development during the summer) and in spring (reflecting the development over winter) samples. Cell culture experiments confirmed that N. ceranae has a higher proliferative potential than N. apis at 27° and 33°C potentially explaining the increase in N. ceranae prevalence during summer. In autumn, characterized by generally low infection prevalence, this increase was accompanied by a significant decrease in N. apis-infection prevalence. In contrast, in spring, the season with a higher prevalence of infection, no significant decrease of N. apis infections despite a significant increase in N. ceranae infections could be observed. Therefore, our data do not support a general advantage of N. ceranae over N. apis and an overall replacement of N. apis by N. ceranae in the studied honey bee population.


Asunto(s)
Abejas/microbiología , Nosema/fisiología , Animales , Estudios de Cohortes , Alemania , Estudios Longitudinales , Nosema/clasificación , Nosema/genética , Nosema/aislamiento & purificación , Estaciones del Año
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA