Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Asunto principal
Intervalo de año de publicación
1.
Clin Epigenetics ; 15(1): 182, 2023 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-37951958

RESUMEN

BACKGROUND: Epithelial mesenchymal transformation (EMT) in alveolar type 2 epithelial cells (AT2) is closely associated with pulmonary fibrosis (PF). Histone deacetylase 3 (HDAC3) is an important enzyme that regulates protein stability by modulating the acetylation level of non-histones. Here, we aimed to explore the potential role and regulatory mechanisms associated with HDAC3 in PF. METHODS: We quantified HDAC3 expression both in lung tissues from patients with PF and from bleomycin (BLM)-treated mice. HDAC3 was also detected in TGF-ß1-treated AT2. The mechanistic activity of HDAC3 in pulmonary fibrosis and EMT was also explored. RESULTS: HDAC3 was highly expressed in lung tissues from patients with PF and bleomycin (BLM)-treated mice, especially in AT2. Lung tissues from AT2-specific HDAC3-deficient mice stimulated with BLM showed alleviative fibrosis and EMT. Upstream of HDAC3, TGF-ß1/SMAD3 directly promoted HDAC3 transcription. Downstream of HDAC3, we also found that genetic or pharmacologic inhibition of HDAC3 inhibited GATA3 expression at the protein level rather than mRNA. Finally, we found that intraperitoneal administration of RGFP966, a selective inhibitor of HDAC3, could prevent mice from BLM-induced pulmonary fibrosis and EMT. CONCLUSION: TGF-ß1/SMAD3 directly promoted the transcription of HDAC3, which aggravated EMT in AT2 and pulmonary fibrosis in mice via deacetylation of GATA3 and inhibition of its degradation. Our results suggest that targeting HDAC3 in AT2 may provide a new therapeutic target for the prevention of PF.


Asunto(s)
Fibrosis Pulmonar , Humanos , Ratones , Animales , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/genética , Fibrosis Pulmonar/prevención & control , Factor de Crecimiento Transformador beta1/genética , Factor de Crecimiento Transformador beta1/metabolismo , Bleomicina/metabolismo , Bleomicina/farmacología , Metilación de ADN , Pulmón/metabolismo , Células Epiteliales/metabolismo , Transición Epitelial-Mesenquimal
2.
Front Bioeng Biotechnol ; 11: 1268428, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38026849

RESUMEN

Atherosclerotic plaque remains the primary cause of morbidity and mortality worldwide. Accurate assessment of the degree of atherosclerotic plaque is critical for predicting the risk of atherosclerotic plaque and monitoring the results after intervention. Compared with traditional technology, the imaging technologies of nanoparticles have distinct advantages and great development prospects in the identification and characterization of vulnerable atherosclerotic plaque. Here, we systematically summarize the latest advances of targeted nanoparticle approaches in the diagnosis of atherosclerotic plaque, including multimodal imaging, fluorescence imaging, photoacoustic imaging, exosome diagnosis, and highlighted the theranostic progress as a new therapeutic strategy. Finally, we discuss the major challenges that need to be addressed for future development and clinical transformation.

3.
Cell Death Discov ; 9(1): 131, 2023 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-37072432

RESUMEN

HDAC3 is a specific and crucial member of the HDAC family. It is required for embryonic growth, development, and physiological function. The regulation of oxidative stress is an important factor in intracellular homeostasis and signal transduction. Currently, HDAC3 has been found to regulate several oxidative stress-related processes and molecules dependent on its deacetylase and non-enzymatic activities. In this review, we comprehensively summarize the knowledge of the relationship of HDAC3 with mitochondria function and metabolism, ROS-produced enzymes, antioxidant enzymes, and oxidative stress-associated transcription factors. We also discuss the role of HDAC3 and its inhibitors in some chronic cardiovascular, kidney, and neurodegenerative diseases. Due to the simultaneous existence of enzyme activity and non-enzyme activity, HDAC3 and the development of its selective inhibitors still need further exploration in the future.

4.
Cell Death Discov ; 8(1): 43, 2022 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-35110526

RESUMEN

Itaconate, a metabolite produced during inflammatory macrophage activation, has been extensively described to be involved in immunoregulation, oxidative stress, and lipid peroxidation. As a form of iron and lipid hydroperoxide-dependent regulated cell death, ferroptosis plays a critical role in sepsis-induced acute lung injury (ALI). However, the relationship between itaconate and ferroptosis remains unclear. This study aims to explore the regulatory role of itaconate on ferroptosis in sepsis-induced ALI. In in vivo experiments, mice were injected with LPS (10 mg/kg) for 12 h to generate experimental sepsis models. Differential gene expression analysis indicated that genes associated with ferroptosis existed significant differences after itaconate pretreatment. 4-octyl itaconate (4-OI), a cell-permeable derivative of endogenous itaconate, can significantly alleviate lung injury, increase LPS-induced levels of glutathione peroxidase 4 (GPX4) and reduce prostaglandin-endoperoxide synthase 2 (PTGS2), malonaldehyde (MDA), and lipid ROS. In vitro experiments showed that both 4-OI and ferrostatin-1 inhibited LPS-induced lipid peroxidation and injury of THP-1 macrophage. Mechanistically, we identified that 4-OI inhibited the GPX4-dependent lipid peroxidation through increased accumulation and activation of Nrf2. The silence of Nrf2 abolished the inhibition of ferroptosis from 4-OI in THP-1 cells. Additionally, the protection of 4-OI for ALI was abolished in Nrf2-knockout mice. We concluded that ferroptosis was one of the critical mechanisms contributing to sepsis-induced ALI. Itaconate is promising as a therapeutic candidate against ALI through inhibiting ferroptosis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA