Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Appl Opt ; 49(32): 6354-63, 2010 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-21068868

RESUMEN

The Durham adaptive optics (AO) real-time controller was initially a proof of concept design for a generic AO control system. It has since been developed into a modern and powerful central-processing-unit-based real-time control system, capable of using hardware acceleration (including field programmable gate arrays and graphical processing units), based primarily around commercial off-the-shelf hardware. It is powerful enough to be used as the real-time controller for all currently planned 8 m class telescope AO systems. Here we give details of this controller and the concepts behind it, and report on performance, including latency and jitter, which is less than 10 µs for small AO systems.

2.
Appl Opt ; 46(24): 6136-41, 2007 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-17712378

RESUMEN

We present a design improvement for a recently proposed type of Shack-Hartmann wavefront sensor that uses a cylindrical (lenticular) lenslet array. The improved sensor design uses optical binning and requires significantly fewer detector pixels than the corresponding conventional or cylindrical Shack-Hartmann sensor, and so detector readout noise causes less signal degradation. Additionally, detector readout time is significantly reduced, which reduces the latency for closed loop systems and data processing requirements. We provide simple analytical noise considerations and Monte Carlo simulations, we show that the optically binned Shack-Hartmann sensor can offer better performance than the conventional counterpart in most practical situations, and our design is particularly suited for use with astronomical adaptive optics systems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA