Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mar Environ Res ; 201: 106687, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39173207

RESUMEN

In the coastal waters around Shandong peninsula, an unprecedented winter bloom of dinoflagellates Gonyaulax polygramma and Akashiwo sanguinea occurred in 2021 from late November to early December. The bloom affected a wide area of coastal waters extending from west to east along the northern Shandong peninsula and had a devastating blow to the kelp cultivation industry. Based on the remote-sensing data, the initiation of the bloom was traced back to the region adjacent to the mouth of the Yellow River in Laizhou Bay, where enhanced freshwater discharge from the Yellow River was recorded from September to November. It's proposed that the increased precipitation in the Yellow River basin associated with northward extension of the precipitation band in China could be an important reason for this winter bloom. This unusual winter bloom around Shandong peninsula highlights the potential risks of harmful algal blooms and their impacts on coastal ecosystems under the background of climate change.

2.
J Hazard Mater ; 469: 133896, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38428300

RESUMEN

Paralytic shellfish toxins (PSTs) produced by some marine dinoflagellates can cause severe human intoxication via vectors like bivalves. Toxic dinoflagellate Gymnodinium catenatum produce a novel group of hydroxybenzoate PSTs named GC toxins, but their biokinetics in bivalves haven't been well examined. In this experiment, we analyzed PSTs in bay scallops Argopecten irradians exposed to G. catenatum (strain MEL11) to determine their accumulation, elimination, anatomical distribution, and biotransformation. To our surprise, up to 30% of the PSTs were accumulated in the adductor muscle of scallops at the end of the experiment, and the toxicity of adductor muscle exceeded the regulatory limit of 800 µg STXeq/kg in only 6 days. High concentration of toxins in the adductor muscle are likely linked to the rapid transfer of GC toxins from viscera to other tissues. Moreover, most GC toxins in scallops were found rapidly transformed to decarbamoyl toxins through enzyme-mediated hydrolysis, which was further supported by the in vitro incubation experiments. Our study demonstrates that GC toxins actively participate in toxin distribution and transformation in scallops, which may increase the risks of food poisoning associated with the consumption of scallop adductor muscle. ENVIRONMENTAL IMPLICATION: The negative impacts of harmful algal blooms (HABs) have become a global environmental concern under the joint effects of cultural eutrophication and climate change. Our study, targeted on the biokinetics of paralytic shellfish toxins in scallops exposed to Gymnodinium catenatum producing unique GC toxins, aims to elucidate potential risks of seafood poisoning associated with GC toxins. The findings of this study will help us to understand the roles of GC toxins in seafood poisoning, and to develop effective management strategies against toxic algal blooms and phycotoxins.


Asunto(s)
Bivalvos , Dinoflagelados , Pectinidae , Intoxicación por Mariscos , Animales , Humanos , Toxinas Marinas/toxicidad , Intoxicación por Mariscos/etiología , Pectinidae/metabolismo , Bivalvos/metabolismo , Hidroxibenzoatos/metabolismo , Alimentos Marinos , Mariscos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA