Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Am J Chin Med ; : 1-24, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38716618

RESUMEN

A high-glucose environment is involved in the progression of diabetes mellitus (DM). This study aims to explore the regulatory effects of quercetin (QUE) on autophagy and apoptosis after myocardial injury in rats with DM. The type 2 DM rat models were constructed using low-dose streptozotocin (STZ) treatment combined with a high-carbohydrate (HC) diet in vivo. Compared with the control group, the body weight was decreased, whereas blood pressure, blood glucose, and the LVW/BW ratio were increased in the diabetic group. The results showed that the myocardial fibers were disordered in the diabetic group. Moreover, we found that the myocardial collagen fibers, PAS-positive cells, and apoptosis were increased, whereas the mitochondrial structure was destroyed and autophagic vacuoles were significantly reduced in the diabetic group compared with the control group. The expression levels of autophagy-related proteins LC3 and Beclin1 were decreased, whereas the expression levels of P62, Caspae-3, and Bax/Bcl-2 were increased in the diabetic group in vitro and in vivo. Moreover, QUE treatment alleviated the cellular oxidative stress reaction under high-glucose environments. The results of immunoprecipitation (IP) showed that the autophagy protein Beclin1 was bound to Bcl-2, and the binding capacity increased in the HG group, whereas it decreased after QUE treatment, suggesting that QUE inhibited the binding capacity between Beclin1 and Bcl-2, thus leading to the preservation of Beclin1-induced autophagy. In addition, the blood pressure, blood glucose, and cardiac function of rats were improved following QUE treatment. In conclusion, QUE suppressed diabetic myocardial injury and ameliorated cardiac function by regulating myocardial autophagy and inhibition of apoptosis in diabetes through the AMPK/mTOR signaling pathway.

2.
Mol Neurobiol ; 61(3): 1417-1432, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37721688

RESUMEN

Reperfusion is an essential pathological stage in hypoxic ischemic encephalopathy (HIE). Although the Rice-Vannucci model is widely used in HIE research, it remains difficult to replicate HIE-related reperfusion brain injury. The purpose of this study is to establish a rat model of hypoxia ischemia reperfusion brain damage (HIRBD) using a common carotid artery (CCA) muscle bridge in order to investigate the mechanisms of cerebral resistance to hypoxic-ischemic and reperfusion brain damage. Random assignment of Sprague-Dawley (SD) rats to the Sham, HIRBD, and Rice-Vannucci groups. Changes in body weight, mortality rate, spontaneous alternation behavior test (SAB test), and dynamic changes in cerebral blood flow (CBF) were detected. The damaged cerebral cortices were extracted for morphological comparison, transcriptomic analysis, and quantitative real-time PCR. Harvesting the hippocampus for transmission electron microscopy (TEM) detection. As a result, CCA muscle bridge could effectively block CBF, which recovered after the muscle bridge detachment. Pathological comparison, the SAB test, and TEM analysis revealed that brain damage in Rice-Vannucci was more severe than HIRBD. Gpx1, S100a6, Cldn5, Esr1, and Gfap were highly expressed in both HIRBD and Rice-Vannucci. In conclusion, the CCA muscle bridge-established HIRBD model could be used as an innovative and dependable model to simulate pathological process of HIRBD.


Asunto(s)
Lesiones Encefálicas , Hipoxia-Isquemia Encefálica , Daño por Reperfusión , Ratas , Animales , Hipoxia-Isquemia Encefálica/complicaciones , Hipoxia-Isquemia Encefálica/patología , Ratas Sprague-Dawley , Encéfalo/patología , Lesiones Encefálicas/patología , Hipoxia/patología , Reperfusión , Daño por Reperfusión/complicaciones , Daño por Reperfusión/patología , Animales Recién Nacidos
3.
Front Oncol ; 13: 1127138, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36994216

RESUMEN

Background: Surgery, including lobectomy and segmentectomy, is the major curative intervention for lung cancer. Surgical planning for pulmonary surgery is difficult due to the high variation rate of pulmonary arteries and needs a fine-grained atlas as a reference. We conducted a study to create a surgically oriented atlas and analyzed the error encountered during the production. Method: A total of 100 Chest CTs performed at Peking University People's Hospital from 2013.09 to 2020.10 were randomly selected for segmental artery labeling. Dicom files were collected for 3D reconstruction. Manual segmentation of each segmental artery was performed by 4 thoracic surgeons. Cross-validation by surgeons was performed to establish the golden standard based on their consensus. Initial recognition errors were recorded accordingly. Result: The most frequently seen variants for the right upper lobe is 2-branch RA1+2rec+3 and RA2asc; right middle lobe 2-branch RA4a and RA4b+5; right lower lobe 3-branch RA7, RA8 and RA9+10; left upper lobe 3-branch LA1+2a+3, LA1+2b, LA1+2c and 1-branch LA4+5; left lower lobe 2-branch LA8 and LA9+10. Top 5 segmental error occurs in RA4 (23%), LA8 (17%), RA9 (17%), RA8 (14%) and LA9 (11%). A rapid surgical planning tool form was created based on high frequency anatomic variants. Conclusion: Our research provided an atlas for lobectomy and segmentectomy at the subsegmental or more distal level. We demonstrated that the recognition accuracy of pulmonary arteries in a non-time-sensitive experimental scenario was still unfavorable. We also suggest that extra attention should be paid to certain surgeries during the surgical planning process.

4.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao ; 44(6): 1056-1062, 2022 Dec.
Artículo en Chino | MEDLINE | ID: mdl-36373644

RESUMEN

The coronavirus disease 2019(COVID-19) caused by severe acute respiratory syndrome coronavirus 2(SARS-CoV-2) is spreading around the world,while the specific drugs targeting SARS-CoV-2 are still under development.On the basis of the biological characteristics of SARS-CoV-2 and the key protein(spike protein) for viral replication,this paper introduces the research progress in the action sites of related drugs,providing information for clinical application and ideas for development of anti-SARS-CoV-2 drugs.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/metabolismo , Glicoproteína de la Espiga del Coronavirus/metabolismo
5.
Hematology ; 27(1): 1041-1045, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36073719

RESUMEN

OBJECTIVES: Dyskeratosis congenita (DC) is a rare inherited disease characterized by the triad of reticulate hyperpigmentation, nail dystrophy and oral leukoplakia. DC patients are considered vulnerable to external pressure, such as immunochemotherapy. There are very few cases reporting severe therapy-induced toxicities in patients with DC. METHODS: A 27-year-old woman was admitted to our hospital with a 4-month history of pancytopenia and a 7-day history of dyspnea with coughing. She was diagnosed with non-Hodgkin's lymphoma 5 months ago. She received immunochemotherapy due to non-Hodgkin's lymphoma but experienced recurrent fever, oral ulcer, pancytopenia, dyspnea and other symptoms during immunochemotherapy. On admission, she experienced an aggravation of respiratory symptoms, recurrent infections and acute heart failure. RESULTS: Laboratory examination confirmed pancytopenia, and chest computed tomography showed interstitial lung disease (ILD). Genetic analysis results confirmed the presence of DC and a TINF2 gene mutation. With continuous supportive and anti-infection treatment, her condition finally stabilized. She was discharged from the hospital after nearly 2 months. DISCUSSION: We reviewed similar cases and found common features that could be useful. However, the reported cases are very limited. More cases and studies are needed. CONCLUSION: These cases indicate that DC patients seem more vulnerable to therapy toxicities; thus, physicians should be careful when treating these patients with chemotherapy drugs or radiation therapy. Reduced-intensity therapy may be considered.


Asunto(s)
Disqueratosis Congénita , Linfoma no Hodgkin , Pancitopenia , Adulto , Disqueratosis Congénita/complicaciones , Disqueratosis Congénita/diagnóstico , Disqueratosis Congénita/terapia , Disnea , Femenino , Humanos , Leucoplasia Bucal , Pancitopenia/inducido químicamente
6.
J Infect Dev Ctries ; 16(6): 1101-1112, 2022 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-35797307

RESUMEN

INTRODUCTION: Chlamydia psittaci pneumonia is a zoonotic infectious disease caused by Chlamydia psittaci. Its clinical manifestations are nonspecific. Diagnosis of the disease is difficult. In recent years, next-generation sequencing has played an important role in pathogen detection. We report two cases with severe Chlamydia psittaci pneumonia confirmed by next-generation sequencing. CASE STUDY: The first case is that of a 50-year old man who presented with high fever for four days and cough with sputum for two days. The second case is that of a 57-year-old man who was admitted with high fever for one week, dyspnea and cough with sputum for four days. The second man worked at a chicken farm in the last two months. In both cases, the usual laboratory examination for pathogens detection was negative, and the initial anti-infectious therapy had limited effect. The bronchoalveolar lavage fluid of case 1 and the blood and sputum of case 2 were sent for next-generation sequencing which resulted in sequence reads of Chlamydia psittaci. Antibiotics were adjusted according to the diagnosis. RESULTS: The diagnosis of the two cases was confirmed by next-generation sequencing detecting Chlamydia psittaci, and the patients had positive results after treatment. CONCLUSIONS: The two cases suggest that next-generation sequencing could be used in early diagnosis of Chlamydia psittaci infection to initiate specific anti-infection therapy in time.


Asunto(s)
Chlamydophila psittaci , Neumonía , Psitacosis , Líquido del Lavado Bronquioalveolar , Chlamydophila psittaci/genética , Tos , Humanos , Psitacosis/diagnóstico , Psitacosis/tratamiento farmacológico
7.
Sci Rep ; 12(1): 9777, 2022 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-35697725

RESUMEN

Atrial fibrillation (AF) is a common atrial arrhythmia for which there is no specific therapeutic drug. Quercetin (Que) has been used to treat cardiovascular diseases such as arrhythmias. In this study, we explored the mechanism of action of Que in AF using network pharmacology and molecular docking. The chemical structure of Que was obtained from Pubchem. TCMSP, Swiss Target Prediction, Drugbank, STITCH, Pharmmapper, CTD, GeneCards, DISGENET and TTD were used to obtain drug component targets and AF-related genes, and extract AF and normal tissue by GEO database differentially expressed genes by GEO database. The top targets were IL6, VEGFA, JUN, MMP9 and EGFR, and Que for AF treatment might involve the role of AGE-RAGE signaling pathway in diabetic complications, MAPK signaling pathway and IL-17 signaling pathway. Molecular docking showed that Que binds strongly to key targets and is differentially expressed in AF. In vivo results showed that Que significantly reduced the duration of AF fibrillation and improved atrial remodeling, reduced p-MAPK protein expression, and inhibited the progression of AF. Combining network pharmacology and molecular docking approaches with in vivo studies advance our understanding of the intensive mechanisms of Quercetin, and provide the targeted basis for clinical Atrial fibrillation treatment.


Asunto(s)
Fibrilación Atrial , Medicamentos Herbarios Chinos , Medicamentos Herbarios Chinos/farmacología , Humanos , Simulación del Acoplamiento Molecular , Farmacología en Red , Quercetina/química , Quercetina/farmacología , Quercetina/uso terapéutico , Transducción de Señal
8.
Diabetes Metab Syndr Obes ; 14: 3851-3863, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34522112

RESUMEN

BACKGROUND: Diabetic cardiomyopathy (DCM) is strongly linked to microvascular disease, renin-angiotensin system (RAS) activation, cardiac inflammation and cell apoptosis. Irbesartan is an angiotensin II (Ang II) receptor antagonist in RAS system, which inhibited the conversion of Ang I into Ang II, while the specific mechanism is still obscure. OBJECTIVE: This study aims to investigate the expressions necroptosis RIP1-RIP3-MLKL pathway in myocardium of diabetic rats, and the protective action of irbesartan on myocardial damage. MATERIALS AND METHODS: In our study, 30 Sprague-Dawley rats were divided into 5 groups: CON4W, high glucose and high caloric (HC4W), diabetes mellitus 4 weeks (DM4W group), diabetes mellitus 8 weeks (DM8W group), and irbesartan diabetes 8 weeks (Ir DM8W group). RESULTS: We discovered that as diabetes progresses, the rats gradually lost weight, the HW/BW ratio were increased gradually, and the cardiac function became worse accompanied with the aggravation of inflammatory injury. Meanwhile, the myocardial fibers and cells were disordered, and the expression of positive substances, RIP1 and RIP3 increased significantly. The mRNA and protein levels of myocardial RIP1, RIP3 and MLKL were all increased with the progression of DM. After the intervention of irbesartan in diabetic rats, the cardiac function was improved, whereas inflammatory injury and HW/BW ratio were decreased. Also, the myocardial fibrosis injury was attenuated, and the PAS positive substances, RIP1 and RIP3 were significantly decreased. The curative effect of irbesartan was related to decreased myocardial RIP1, RIP3 and MLKL mRNA and protein levels. CONCLUSION: In conclusion, irbesartan has a cardioprotective effect on the diabetic rats, and its mechanism may be connected with inhibition of RIP1-RIP3-MLKL pathway.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...