Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
CNS Neurosci Ther ; 30(2): e14627, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38353058

RESUMEN

BACKGROUND: Systemic inflammation in which lipopolysaccharide (LPS) is released into circulation can cause cognitive dysfunction and we have previously shown that LPS impaired working memory (WM) which refers to the ability to guide incoming behavior by retrieving recently acquired information. However, the mechanism is not very clear, and currently, there is no approved strategy to improve inflammation-induced WM deficit. Notably, epidemiological studies have demonstrated a lower occurrence rate of inflammatory-related diseases in smoking patients, suggesting that inflammation-induced WM impairment may be improved by nicotine treatment. Here, our object is to investigate the effect and potential mechanisms of acute and chronic nicotine treatment on LPS-produced WM deficiency. METHODS: Delayed alternation T-maze task (DAT) was applied for evaluating WM which includes both the short-term information storage and the ability to correct errors in adult male mice. Immunofluorescence staining and immunoblotting were used for assessing the levels and distribution of CREB-regulated transcription coactivator 1 (CRTC1) and hyperpolarization-activated cation channels 2 (HCN2) in the medial prefrontal cortex (mPFC) and hippocampus. Quantitative PCR and ELISA were employed for analyzing the mRNA and protein levels of TNF-α and IL-1ß. RESULTS: Our results revealed that administration of LPS (i.p.) at a dose of 0.5 mg/kg significantly produced WM impairment in the DAT task accompanied by an increase in IL-1ß and TNF-α expression in the mPFC. Moreover, intra-mPFC infusion of IL-1Ra, an IL-1 antagonist, markedly alleviated LPS-induced WM deficiency. More important, chronic (2 weeks) but not acute nicotine (0.2 mg/kg, subcutaneous) treatment significantly alleviated LPS-induced WM deficiency by upregulating CRTC1 and HCN2. Of note, intra-mPFC infusion of HCN blocker ZD7288 produced significant WM deficiency. CONCLUSIONS: In summary, in this study, we show that chronic nicotine treatment ameliorates acute inflammation-induced working memory deficiency by increasing CRTC1 and HCN2 in adult male mice.


Asunto(s)
Memoria a Corto Plazo , Nicotina , Humanos , Ratones , Masculino , Animales , Memoria a Corto Plazo/fisiología , Nicotina/farmacología , Nicotina/uso terapéutico , Nicotina/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Lipopolisacáridos/toxicidad , Trastornos de la Memoria/tratamiento farmacológico , Trastornos de la Memoria/etiología , Trastornos de la Memoria/metabolismo , Hipocampo/metabolismo , Factores de Transcripción/metabolismo , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Interleucina-1beta/metabolismo , Canales de Potasio/metabolismo , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/metabolismo
2.
Regen Ther ; 24: 651-661, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38074191

RESUMEN

Background aims: Spinal cord injury (SCI) is one of the most complex and destructive diseases of the nervous system, which can lead to permanent loss of tactile perception. But existing treatment methods have limited effects. To establish a novel method that may be therapeutic in repairing the injured spinal cord, gene-modified dental pulp stem cells (DPSCs) were injected in situ. Methods: Adenovirus carrying osteopontin (OPN), Insulin-like growth factor 1 (IGF-1) and cailiary-derived neurotrophic factor (CNTF) (Ad-OIC) was constructed. After modified with Ad-OIC, supernatant of DPSC were co-cultured with HT-22 cells and the effect of DPSC-OIC on the HT-22 cells were evaluated via Cell Counting Kit-8 (CCK-8) assay, Real-Time polymerase chain reaction (PCR) analysis, laser confocal microscopy and fluorescence activating cell sorter (FACS). DPSC-OIC were injected in the lesion area of injured spinal cord and the survival time of transplanted cells were measured by bioluminescence imaging system. The recovery of the injured spinal cord was evaluated by behavioral score, radiological evaluation and immunopathological analysis. Results: DPSC-OIC could enhance the proliferation and axon growth of HT-22 cells, and protect HT-22 cells from H2O2 induced apoptosis. The transplanted DPSC-Null or DPSC-OIC could survive for more than two weeks in local injection site. DPSC-OIC treatment could increase Basso-Mouse Scale (BMS) scores, improve Magnetic Resonance Imaging (MRI) manifestation and promote bladder function recovery. Less apoptotic neurons and more proliferative cells were found in the lesion area of DPSC-OIC treated spinal cord. Nestin+ cells and neural stem cell marker (Sox2) were both up-regulated after DPSC-OIC treatment. Additionally, inhibitory extracellular matrix proteoglycan Neural/Glial Antigen 2 (NG2) was down-regulated and axon growth promotive factor fibronectin was up-regulated after both DPSC-Null (DPSCs infected with Ad-Null) and DPSC-OIC treatments. Conclusions: DPSC-OIC could be a novel effective method for treating SCI.

3.
Aging Dis ; 2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37962453

RESUMEN

Blood-brain barrier (BBB) damage is the main pathological basis for acute ischemic stroke (AIS)-induced cerebral vasogenic edema and hemorrhagic transformation (HT). Glial cells, including microglia, astrocytes, and oligodendrocyte precursor cells (OPCs)/oligodendrocytes (OLs) play critical roles in BBB damage and protection. Recent evidence indicates that immune cells also have an important role in BBB damage, vasogenic edema and HT. Therefore, regulating the crosstalk between glial cells and immune cells would hold the promise to alleviate AIS-induced BBB damage. In this review, we first introduce the roles of glia cells, pericytes, and crosstalk between glial cells in the damage and protection of BBB after AIS, emphasizing the polarization, inflammatory response and crosstalk between microglia, astrocytes, and other glia cells. We then describe the role of glial cell-derived exosomes in the damage and protection of BBB after AIS. Next, we specifically discuss the crosstalk between glial cells and immune cells after AIS. Finally, we propose that glial cells could be a potential target for alleviating BBB damage after AIS and we discuss some molecular targets and potential strategies to alleviate BBB damage by regulating glial cells after AIS.

4.
Transl Stroke Res ; 2023 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-37233908

RESUMEN

Analysis of a National Institutes of Health (NIH) trial shows that cigarette smoking protected tissue plasminogen activator (tPA)-treated patients from hemorrhage transformation (HT); however, the underlying mechanism is not clear. Damage to the integrity of the blood-brain barrier (BBB) is the pathological basis of HT. Here, we investigated the molecular events of BBB damage after acute ischemic stroke (AIS) using in vitro oxygen-glucose deprivation (OGD) and in vivo mice middle cerebral artery occlusion (MCAO) models. Our results showed that the permeability of bEND.3 monolayer endothelial cells was significantly increased after being exposed to OGD for 2 h. Mice were subjected to 90-min ischemia with 45-min reperfusion, and BBB integrity was significantly damaged, accompanied by tight junction protein occludin degradation, downregulation of microRNA-21 (miR-21), transforming growth factor-ß (TGF-ß), phosphorylated Smad (p-Smad), plasminogen activator inhibitor-1 (PAI-1), and the upregulation of PDZ and LIM domain protein 5 (Pdlim5), an adaptor protein that has been shown to regulate TGF-ß-Smad3 pathway. In addition, pretreatment with two-week nicotine significantly reduced AIS-induced BBB damage and its associated protein dysregulation via downregulating Pdlim5. Notably, AIS did not significantly induce BBB damage in Pdlim5 deficit mice, but overexpression of Pdlim5 in the striatum with adeno-associated virus produced BBB damage and associated protein dysregulation which could be ameliorated by two-week nicotine pretreatment. More important, AIS induced a significant miR-21 decrease, and miR-21 mimics treatment decreased AIS-induced BBB damage by decreasing Pdlim5. Together, these results demonstrate that nicotine treatment alleviates the AIS-compromised integrity of BBB by regulating Pdlim5.

5.
Neurobiol Dis ; 180: 106076, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36921779

RESUMEN

The neurovascular unit (NVU) plays a critical role in health and disease. In the current review, we discuss the critical role of a class of neural/glial antigen 2 (NG2)-expressing glial cells (NG2-glia) in regulating NVU after acute ischemic stroke (AIS). We first introduce the role of NG2-glia in the formation of NVU during development as well as aging-induced damage to NVU and accompanying NG2-glia change. We then discuss the reciprocal interactions between NG2-glia and the other component cells of NVU, emphasizing the factors that could influence NG2-glia. Damage to the NVU integrity is the pathological basis of edema and hemorrhagic transformation, the most dreaded complication after AIS. The role of NG2-glia in AIS-induced NVU damage and the effect of NG2-glia transplantation on AIS-induced NVU damage are summarized. We next discuss the role of NG2-glia and the effect of NG2-glia transplantation in oligodendrogenesis and white matter repair as well as angiogenesis which is associated with the outcome of the patients after AIS. Finally, we review the current strategies to promote NG2-glia proliferation and differentiation and propose to use the dental pulp stem cells (DPSC)-derived exosome as a promising strategy to reduce AIS-induced injury and promote repair through maintaining the integrity of NVU by regulating endogenous NG2-glia proliferation and differentiation.


Asunto(s)
Accidente Cerebrovascular Isquémico , Sustancia Blanca , Humanos , Diferenciación Celular/fisiología , Proliferación Celular/fisiología , Neuroglía/patología
6.
Artículo en Inglés | MEDLINE | ID: mdl-36736944

RESUMEN

Tobacco smoking is a preventable cause of morbidity and mortality throughout the world. Smoking comes in form of absorption of many compounds, among which nicotine is the main psychoactive component of tobacco and its positive and negative reinforcement effects are proposed to be the key mechanism for the initiation and maintenance of smoking. Growing evidence suggests that the cognitive enhancement effects of nicotine may also contribute to the difficulty of quitting smoking, especially in individuals with psychiatric disorders. In this review, we first introduce the beneficial effect of nicotine on cognition including attention, short-term memory and long-term memory. We next summarize the beneficial effect of nicotine on cognition under pathological conditions, including Alzheimer's disease, Parkinson's disease, Schizophrenia, Stress-induced Anxiety, Depression, and drug-induced memory impairment. The possible mechanism underlying nicotine's effect is also explored. Finally, nicotine's detrimental effect on cognition is discussed, including in the prenatal and adolescent periods, and high-dose nicotine- and withdrawal-induced memory impairment is emphasized. Therefore, nicotine serves as both a friend and foe. Nicotine-derived compounds could be a promising strategy to alleviate neurological disease-associated cognitive deficit, however, due to nicotine's detrimental effect, continued educational programs and public awareness campaigns are needed to reduce tobacco use among pregnant women and smoking should be quitted even if it is e-cigarette, especially for the adolescents.


Asunto(s)
Sistemas Electrónicos de Liberación de Nicotina , Tabaquismo , Embarazo , Femenino , Humanos , Adolescente , Nicotina/efectos adversos , Fumar/psicología , Cognición , Trastornos de la Memoria
7.
Acta Pharmacol Sin ; 44(4): 780-790, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36038765

RESUMEN

Increasing evidence shows that smoking-obtained nicotine is indicated to improve cognition and mitigate certain symptoms of schizophrenia. In this study, we investigated whether chronic nicotine treatment alleviated MK-801-induced schizophrenia-like symptoms and cognitive impairment in mice. Mice were injected with MK-801 (0.2 mg/kg, i.p.), and the behavioral deficits were assessed using prepulse inhibition (PPI) and T-maze tests. We showed that MK-801 caused cognitive impairment accompanied by increased expression of PDZ and LIM domain 5 (Pdlim5), an adaptor protein that is critically associated with schizophrenia, in the prefrontal cortex (PFC). Pretreatment with nicotine (0.2 mg · kg-1 · d-1, s.c., for 2 weeks) significantly ameliorated MK-801-induced schizophrenia-like symptoms and cognitive impairment by reversing the increased Pdlim5 expression levels in the PFC. In addition, pretreatment with nicotine prevented the MK-801-induced decrease in CREB-regulated transcription coactivator 1 (CRTC1), a coactivator of CREB that plays an important role in cognition. Furthermore, MK-801 neither induced schizophrenia-like behaviors nor decreased CRTC1 levels in the PFC of Pdlim5-/- mice. Overexpression of Pdlim5 in the PFC through intra-PFC infusion of an adreno-associated virus AAV-Pdlim5 induced significant schizophrenia-like symptoms and cognitive impairment. In conclusion, chronic nicotine treatment alleviates schizophrenia-induced memory deficits in mice by regulating Pdlim5 and CRTC1 expression in the PFC.


Asunto(s)
Disfunción Cognitiva , Maleato de Dizocilpina , Ratones , Animales , Maleato de Dizocilpina/metabolismo , Maleato de Dizocilpina/farmacología , Nicotina/farmacología , Disfunción Cognitiva/inducido químicamente , Disfunción Cognitiva/tratamiento farmacológico , Disfunción Cognitiva/metabolismo , Corteza Prefrontal/metabolismo , Cognición , Factores de Transcripción/metabolismo
8.
Stem Cells Int ; 2022: 7590337, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36299466

RESUMEN

Intervertebral disc (IVD) degeneration is the primary cause for low back pain that has a high prevalence in modern society and poses enormous economic burden on patients. Few effective therapeutic strategies are available for IVD degeneration treatment. To understand the biological effects of dental pulp stem cells (DPSCs) on nucleus pulposus (NP) cells, we carried out RNA sequencing, bioinformatic analysis which unveiled gene expression differences, and pathway variation in primarily isolated patients' NP cells after treatment with DPSCs supernatant. Western blot and immunofluorescence were used to verify these molecular alterations. Besides, to evaluate the therapeutic effect of DPSCs in IVD degeneration treatment, DPSCs were injected into a degeneration rat model in situ, with treatment outcome measured by micro-CT and histological analysis. RNA sequencing and in vitro experiments demonstrated that DPSCs supernatant could downregulate NP cells' inflammation-related NF-κB and JAK-STAT pathways, reduce IL-6 production, increase collagen II expression, and mitigate apoptosis. In vivo results showed that DPSCs treatment protected the integrity of the disc structure, alleviated extracellular matrix degradation, and increased collagen fiber expression. In this study, we verified the therapeutic effect of DPSCs in an IVD degeneration rat model and elucidated the underlying molecular mechanism of DPSCs treatment, which provides a foundation for the application of DPSCs in IVD degeneration treatment.

9.
Comput Intell Neurosci ; 2022: 1789490, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36275963

RESUMEN

To realize load balancing of cloud computing platforms in big data processing, the method of finding the optimal load balancing physical host in the algorithm cycle is adopted at present. This optimal load balancing strategy that overly focuses on the current deployment problem has certain limitations. It will make the system less efficient and the user's waiting time unnecessarily prolonged. This paper proposes a task assignment method for long-term resource load balancing of cloud platforms based on artificial intelligence and big data (TABAI). The maximum posterior probability for each physical host is calculated using Bayesian theory. Euler's formula is used to calculate the similarity between the host with the largest posterior probability and other hosts as a threshold. The hosts are classified according to the threshold to determine the optimal cluster and then form the final set of candidate physical hosts. It improves the resource utilization and external service capability of the cloud platform by combining cluster analysis with Bayes' theorem to achieve global load balancing in the time dimension. The experimental results show that: TABAI has a smaller processing time than the traditional load balancing multi-task assignment method. When the time is >600 s, the standard deviation of TABAI decreases to a greater extent, and it has stronger external service capabilities.


Asunto(s)
Inteligencia Artificial , Nube Computacional , Teorema de Bayes , Algoritmos , Macrodatos
10.
Drug Des Devel Ther ; 16: 1667-1678, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35677424

RESUMEN

Introduction: Recombinant neorudin (EPR-hirudin, EH) was developed through the addition of an EPR (Glu-Pro-Arg) peptide to the amino terminus of hirudin, which can be recognized and cut by coagulation factors XIa (FXIa) and/or Xa (FXa). In this study, the low-bleeding antithrombotic effects of EH were evaluated utilizing experimental models of thrombosis in rabbits and rats to provide a test basis for clinical trials. Methods: The bleeding risks of EH and hirudin were first compared in mice by the tail-clipping method, and then the antithrombotic activity of EH was investigated in a rabbit model of arteriovenous bypass thrombosis and a rat model of thrombotic cerebral infarction. Results: In mice, intravenous administration of EH at 1.5 mg/kg and 3 mg/kg did not affect the bleeding time compared with normal saline, while the administration of hirudin at 1.5 mg/kg prolonged the bleeding time by over 3 times the administration of normal saline. Furthermore, intravenous administration of EH had a significant dose-dependent inhibitory effect on the formation and development of arteriovenous bypass thrombosis and thrombotic cerebral infarction. Compared with an equimolar dose of hirudin, the antithrombotic effect of EH was similar, while the bleeding side effects were significantly attenuated. Moreover, when the antithrombotic effects were similar, EH had a shorter bleeding time and was associated with less bleeding than low molecular weight heparin (LMWH). EH had a therapeutic effect on thrombotic cerebral infarction without increasing the occurrence of cerebral hemorrhage. Conclusion: The findings from the preclinical animal models used in this study showed that EH could not only effectively inhibit thrombus formation but also reduce the risk of bleeding.


Asunto(s)
Hirudinas , Trombosis , Animales , Infarto Cerebral/tratamiento farmacológico , Fibrinolíticos/uso terapéutico , Hemorragia/tratamiento farmacológico , Heparina de Bajo-Peso-Molecular/uso terapéutico , Hirudinas/farmacología , Ratones , Conejos , Ratas , Proteínas Recombinantes , Solución Salina , Trombosis/tratamiento farmacológico
11.
Stem Cells Int ; 2021: 6662831, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33747095

RESUMEN

Paraquat (PQ) poisoning can cause acute lung injury and progress to pulmonary fibrosis and eventually death without effective therapy. Mesenchymal stem cells (MSCs) and hepatocyte growth factor (HGF) have been shown to partially reverse this damage. MSCs can be derived from bone marrow (BM-MSCs), adipose tissue (AD-MSCs), umbilical cord (UC-MSCs), dental pulp (DPSCs), and other sources. The biological characteristics of MSCs are specific to the tissue source. To develop an effective treatment for PQ poisoning, we compared the anti-inflammatory and antifibrotic effects of UC-MSCs and DPSCs and chose and modified a suitable source with HGF to investigate their therapeutic effects in vitro and in vivo. In this study, MSCs' supernatant was beneficial to the viability and proliferation of human lung epithelial cell BEAS-2B. Inflammatory and fibrosis-related cytokines were analyzed by real-time PCR. The results showed that MSCs' supernatant could suppress the expression of proinflammatory and profibrotic cytokines and increase the expression of anti-inflammatory and antifibrotic cytokines in BEAS-2B cells and human pulmonary fibroblast MRC-5. Extracellular vesicles (EVs) derived from MSCs performed more effectively than MSCs' supernatant. The effect of DPSCs was stronger than that of UC-MSCs and was further strengthened by HGF modification. PQ-poisoned mice were established, and UC-MSCs, DPSCs, and DPSCs-HGF were administered. Histopathological assessments revealed that DPSCs-HGF mitigated lung inflammation and collagen accumulation more effectively than the other treatments. DPSCs-HGF reduced lung permeability and increased the survival rate of PQ mice from 20% to 50%. Taken together, these results indicated that DPSCs can suppress inflammation and fibrosis in human lung cells better than UC-MSCs. The anti-inflammatory and antifibrotic effects were significantly enhanced by HGF modification. DPSCs-HGF ameliorated pulmonitis and pulmonary fibrosis in PQ mice, effectively improving the survival rate, which might be mediated by paracrine mechanisms. The results suggested that DPSCs-HGF transplantation was a potential therapeutic approach for PQ poisoning.

12.
Stem Cell Rev Rep ; 17(2): 318-331, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-32749649

RESUMEN

Radiation therapy can cause haematopoietic damage, and mesenchymal stem cells (MSCs) derived extracellular vesicles (EVs) have been shown to reverse this damage. Our previous research showed that dental pulp stem cells (DPSCs) have a strong proliferation capacity and can produce abundant amounts of EVs to meet the requirements for use in vitro and in vivo. DPSCs derived EVs (DPSCs-EVs) are evaluated for their effect on reducing haematopoietic damage. Haematopoietic stem cell (HSC) numbers and function were assessed by flow cytometry, peripheral blood cell counts, histology and bone marrow transplantation. Epidermal growth factor (EGF) was used as a reference for evaluating the efficiency of EVs. miRNA microarray was employed to find out the changes of miRNA expression after cells being irradiated in vivo and the role they may play in mitigation the radiation caused injury. We observed the effect of DPSCs-EVs on promoting proliferation and inhibiting apoptosis of human umbilical vein endothelial cells (HUVECs) and FDC-P1 cells in vitro. We found that DPSCs-EVs and EGF could comparably inhibit the decrease in WBC, CFU count and KSL cells in vivo. We also verified that EVs could accelerate the recovery of long-term HSCs. In summary, DPSCs-EVs showed an apoptosis resistant effect on HUVECs and FDC-P1 cells after radiation injury in vitro. EVs from DPSCs were comparable to EGF in their ability to regulate haematopoietic regeneration after radiation injury in vivo. Radiation could alter the expression of some miRNAs in bone marrow cells, and EVs could correct these changes to some extent. Graphical abstract.


Asunto(s)
Pulpa Dental/citología , Vesículas Extracelulares , Trasplante de Células Madre Hematopoyéticas , Traumatismos por Radiación , Células Madre , Células Endoteliales , Factor de Crecimiento Epidérmico , Humanos , MicroARNs
13.
Biochim Biophys Acta Mol Basis Dis ; 1864(1): 60-68, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29017894

RESUMEN

Rotaviruses are double-stranded RNA viruses that are a major cause of viral diarrhea in infants. Examining virus-host cell interaction is important for elucidating mechanisms of virus proliferation in host cells. Viruses can create an environment that promotes their survival and self-proliferation by encoding miRNAs or miRNA-like molecules that target various host cell. However, it remains unclear whether RNA viruses encode viral miRNAs, and their regulation mechanisms are largely unknown. We previously performed deep sequencing analysis to investigate rotavirus-encoded miRNAs, and identified the small RNA molecule Chr17_1755, which we named RV-vsRNA1755. In our present study, we determined that RV-vsRNA1755 is encoded by the rotavirus NSP4 gene and that it targets the host cell IGF1R, which is part of the PI3K/Akt pathway. We further explored the biological characteristics and functions of RV-vsRNA1755.Our results suggest that rotavirus adapts to manipulate PI3K/Akt signaling at early phases of infection. RV-vsRNA1755 targets IGF1R, blockading the PI3K/Akt pathway and triggering autophagy, but it ultimately inhibits autophagy maturation. A mechanism through which rotavirus encodes a virus-like small RNA (RV-vsRNA1755) that triggers autophagy by targeting the host cell IGF1R gene was revealed. These data provide a theoretical basis for therapeutic drug screening targeting RV-vsRNA1755.


Asunto(s)
Autofagia/genética , MicroARNs/fisiología , Receptores de Somatomedina/genética , Rotavirus/genética , Animales , Células CACO-2 , Células Cultivadas , Regulación de la Expresión Génica , Células HEK293 , Células HT29 , Humanos , Lactante , Macaca mulatta , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptor IGF Tipo 1 , Receptores de Somatomedina/metabolismo , Transducción de Señal/genética , Serina-Treonina Quinasas TOR/metabolismo
14.
J Med Virol ; 88(9): 1497-510, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-26890217

RESUMEN

Rotavirus infection is an important cause of acute gastroenteritis in children, but the interaction between rotavirus and host cells is not completely understood. We isolated a wildtype (wt) rotavirus strain, ZTR-68(P [8] G1), which is derived from an infant with diarrhea in southwest China in 2010. In this study, we investigated host cellular miRNA expression profiles changes in response to ZTR-68 in early stage of infection to investigate the role of miRNAs upon rotavirus infection. Differentially expressed miRNAs were identified by deep sequencing and qRT-PCR and the function of their targets predicted by Gene Ontology (GO) function and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway annotation. A total of 36 candidate miRNAs were identified. Comparative analysis indicated that 29 miRNAs were significantly down-regulated and 7 were up-regulated after infection. The data were provided contrasting the types of microRNAs in two different permissive cell lines (HT29 and MA104). The target assays results showed that mml-miR-7 and mml-miR-125a are involved in anti-rotavirus and virus-host interaction in host cells. These results offer clues for identifying potential candidates in vector-based antiviral strategies. J. Med. Virol. 88:1497-1510, 2016. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Perfilación de la Expresión Génica , Interacciones Huésped-Patógeno , MicroARNs/genética , Infecciones por Rotavirus/genética , Rotavirus/fisiología , Biomarcadores , Línea Celular , China , Biología Computacional , Diarrea/virología , Regulación hacia Abajo , Células HT29 , Secuenciación de Nucleótidos de Alto Rendimiento , Interacciones Huésped-Patógeno/genética , Humanos , Análisis de Secuencia por Matrices de Oligonucleótidos , Reacción en Cadena en Tiempo Real de la Polimerasa , Rotavirus/aislamiento & purificación , Infecciones por Rotavirus/virología , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...