Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Cell Mol Biol (Noisy-le-grand) ; 70(7): 100-105, 2024 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-39097890

RESUMEN

Goosecoid (GSC), translated from a homeobox gene, is a protein that participates in metastasis of various cancers. Pancreatic adenocarcinoma (PAAD) is one of the deadliest malignancies associated with a poor diagnosis and prognosis. To develop new treatment target or biomarker for PAAD, this study intended to assess the effects and the molecular mechanism of GSC on PAAD metastasis. The expressive discrepancy of GSC in PAAD and normal tissues/cells was compared by both the quantitative PCR and western blot. The effects of GSC silencing and GSC over-expression on PAAD cells and TGF-ß signaling were proved by wound-healing assay, cell counting kit-8, Transwell assay and western blot. From the results, GSC mRNA and protein levels were enriched in PAAD cancer tissues and cells. GSC silencing prohibited metastasis of PAAD cells including the ability to invade, migrate and epithelial-mesenchymal transition (EMT), whereas GSC upregulation stimulated these cells behaviors above. GSC silencing reversed the effects on cellular processes induced by activation of the TGF-ß pathway. Furthermore, silencing of GSC postponed tumor growth in xenograft model. In summary, GSC was abundantly expressed in PAAD, which activated the TGF-ß pathway to enhance cell metastasis and tumor development.


Asunto(s)
Adenocarcinoma , Transición Epitelial-Mesenquimal , Metástasis de la Neoplasia , Neoplasias Pancreáticas , Transducción de Señal , Factor de Crecimiento Transformador beta , Animales , Humanos , Ratones , Adenocarcinoma/metabolismo , Adenocarcinoma/patología , Adenocarcinoma/genética , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular , Transición Epitelial-Mesenquimal/genética , Regulación Neoplásica de la Expresión Génica , Silenciador del Gen , Péptidos y Proteínas de Señalización Intercelular , Ratones Endogámicos BALB C , Ratones Desnudos , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/genética , Factor de Crecimiento Transformador beta/metabolismo
2.
Biochem Genet ; 62(1): 242-253, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37326897

RESUMEN

Pancreatic cancer remains the common cancer with the worst prognosis because of its late diagnosis and extensive metastasis. This study aimed to investigate the effects of GABRP on pancreatic cancer metastasis and the molecular mechanism. The expression of GABRP was measured using the quantitative real-time PCR and western blot. The biological behaviors of cancer cells were assessed using the cell counting kit-8, Transwell assay, and western blot. The regulation of GABRP on the MEK/ERK pathway was detected by western blot. The results indicated that GABRP was overexpressed in pancreatic cancer tissues and cells. Knockdown of GABRP suppressed cell viability, invasion, migration, and epithelial-mesenchymal transition (EMT), whereas GABRP overexpression facilitated these biological behaviors. Inactivation of the MEK/ERK pathway reversed the effects on cellular processes induced by GABRP. Moreover, silencing of GABRP inhibited tumor growth. In conclusion, GABRP promoted the progression of pancreatic cancer by facilitating cell metastasis and tumor growth via activating the MEK/ERK pathway. The findings suggest that GABRP has the potential to be a therapeutic target for the metastatic pancreatic cancer.


Asunto(s)
Sistema de Señalización de MAP Quinasas , Neoplasias Pancreáticas , Humanos , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Neoplasias Pancreáticas/patología , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo , Transducción de Señal
3.
Breast Cancer Res ; 25(1): 100, 2023 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-37644609

RESUMEN

BACKGROUND: The interface zone, area around invasive carcinoma, can be thought of as the actual tissue of the tumor microenvironment with precedent alterations for tumor invasion. However, the heterogeneity and characteristics of the microenvironment in the interface area have not yet been thoroughly explored. METHODS: For in vitro studies, single-cell RNA sequencing (scRNA-seq) was used to characterize the cells from the tumor zone, the normal zone and the interface zone with 5-mm-wide belts between the tumor invasion front and the normal zone. Through scRNA-seq data analysis, we compared the cell types and their transcriptional characteristics in the different zones. Pseudotime, cell-cell communication and pathway analysis were performed to characterize the zone-specific microenvironment. Cell proliferation, wound healing and clone formation experiments explored the function of differentially expressed gene BMPR1B, which were confirmed by tumor models in vivo. RESULTS: After screening, 88,548 high-quality cells were obtained and identified. Regulatory T cells, M2 macrophages, angiogenesis-related mast cells, stem cells with weak DNA repair ability, endothelial cells with angiogenic activity, fibroblasts with collagen synthesis and epithelial cells with proliferative activity form a unique tumorigenic microenvironment in the interface zone. Cell-cell communication analysis revealed that there are special ligand-receptor pairs between different cell types in the interface zone, which protects endothelial cell apoptosis and promotes epithelial cell proliferation and migration, compared to the normal zone. Compared with the normal zone, the highly expressed BMPR1B gene promotes the tumorigenic ability of cancer cells in the interface zone. CONCLUSIONS: Our work identified a unique tumorigenic microenvironment of the interface zone and allowed for deeper insights into the tumor microenvironment of breast cancer that will serve as a helpful resource for advancing breast cancer diagnosis and therapy.


Asunto(s)
Neoplasias de la Mama , Carcinoma , Humanos , Femenino , Neoplasias de la Mama/genética , Células Endoteliales , Carcinogénesis/genética , Apoptosis/genética , Microambiente Tumoral/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA