Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Sci Rep ; 14(1): 12251, 2024 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-38806615

RESUMEN

Mesenchymal stem cells (MSCs) have demonstrated promising advantages in the therapies of many diseases, while its multi-directional differentiation potential and immunotoxicity are the major concerns hindered their clinical translation. In this study, human umbilical Mesenchymal stem cell (hUC-MSCs) were labeled with a near-infrared fluorescent dye DiR before infused into cynomolgus monkeys, and the amount of hUC-MSCs in the peripheral blood were dynamically estimated from 5 min to 28 days post a single administration at 3 × 106 cells/kg and 2 × 107 cells/kg intravenously. As results, some hUC-MSCs distributed to the whole body within 5 min, while most of the cells accumulate in the lungs along with the systemic blood circulation, and subsequently released into the blood. The toxicity potentials of hUC-MSCs were investigated in another 30 cynomolgus monkeys, and the cells were repeatedly administrated at doses of 3 × 106 cells/kg and 2 × 107 cells/kg for 5 times on a weekly basis, with a recovery period of 1 months. hUC-MSCs showed no obvious toxic effects in cynomolgus monkeys, except xenogeneic immune rejection to human stem cells. Low levels of the hUC-MSC gene were detected in the peripheral blood of a few animals administered 2 × 107 cells/kg at 30 min subsequent to the first and last administration, and there was no significant difference in the copy number of the hUC-MSC gene in the blood samples compared with the first and last administration, indicating that the hUC-MSC was not significantly amplified in vivo, and it its safe in non-human primates. Our study for the first time verified the safety of long-term use of hUC-MSCs in primates. We have pioneered a technology for the real-time detection of hUC-MSCs in peripheral blood and provide dynamicand rapid monitoring of the distribution characteristics of hUC-MSCs in vivo. Here, we provide data supporting the application of such products for clinical treatment and the application of stem cells in major refractory diseases and regenerative medicine.


Asunto(s)
Macaca fascicularis , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Cordón Umbilical , Animales , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Humanos , Cordón Umbilical/citología , Trasplante de Células Madre Mesenquimatosas/métodos , Masculino , Diferenciación Celular , Femenino
2.
Toxicology ; 505: 153829, 2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38740170

RESUMEN

Drug-induced liver injury (DILI) is one of the major concerns during drug development. Wide acceptance of the 3 R principles and the innovation of in-vitro techniques have introduced various novel model options, among which the three-dimensional (3D) cell spheroid cultures have shown a promising prospect in DILI prediction. The present study developed a 3D quadruple cell co-culture liver spheroid model for DILI prediction via self-assembly. Induction by phorbol 12-myristate 13-acetate at the concentration of 15.42 ng/mL for 48 hours with a following 24-hour rest period was used for THP-1 cell differentiation, resulting in credible macrophagic phenotypes. HepG2 cells, PUMC-HUVEC-T1 cells, THP-1-originated macrophages, and human hepatic stellate cells were selected as the components, which exhibited adaptability in the designated spheroid culture conditions. Following establishment, the characterization demonstrated the competence of the model in long-term stability reflected by the maintenance of morphology, viability, cellular integration, and cell-cell junctions for at least six days, as well as the reliable liver-specific functions including superior albumin and urea secretion, improved drug metabolic enzyme expression and CYP3A4 activity, and the expression of MRP2, BSEP, and P-GP accompanied by the bile acid efflux transport function. In the comparative testing using 22 DILI-positive and 5 DILI-negative compounds among the novel 3D co-culture model, 3D HepG2 spheroids, and 2D HepG2 monolayers, the 3D culture method significantly enhanced the model sensitivity to compound cytotoxicity compared to the 2D form. The novel co-culture liver spheroid model exhibited higher overall predictive power with margin of safety as the classifying tool. In addition, the non-parenchymal cell components could amplify the toxicity of isoniazid in the 3D model, suggesting their potential mediating role in immune-mediated toxicity. The proof-of-concept experiments demonstrated the capability of the model in replicating drug-induced lipid dysregulation, bile acid efflux inhibition, and α-SMA upregulation, which are the key features of liver steatosis and phospholipidosis, cholestasis, and fibrosis, respectively. Overall, the novel 3D quadruple cell co-culture spheroid model is a reliable and readily available option for DILI prediction.

3.
Sci Rep ; 13(1): 21501, 2023 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-38057444

RESUMEN

Polyethylene glycol-coated magnetic nanoparticles (PEGylated MNPs) have demonstrated prominent advantages in cancer diagnosis and hyperthermia therapy. However, there is currently lack of standard mode and sufficient toxicity data for determining the delayed risk of PEGylated MNPs. Nevertheless, the toxicity potentials, especially those associated with the oxidative stress, were ubiquitously reported. In this study, PEGylated MNPs and p-PEGylated MNPs were administrated to SD (Sprague Dawley) rats by single intravenously injection, and various toxicity indicators were monitored till 56 days post-administration for a comprehensive toxicity evaluation. We revealed that both nanoparticles could be rapidly cleared from plasma and enter tissues, such as, liver, kidneys and spleen, and p-PEGylated MNP is less prone to be accumulated in the tissues, indicating a lower toxicity risk. PEGylated MNPs were more likely to up-regulate the expression levels of Th2 type cytokines and trigger inflammatory pathways, but no related pathological change was found. Both MNPs are not mutagenic, while recoverable mild DNA damage associated with the presence of nanoparticles might also be observed. This study demonstrated a research approach for the non-clinical safety evaluation of nanoparticles. It also provided comprehensive valuable safety data for PEGylated and p-PEGylated MNPs, for promoting the clinical application and bio-medical translation of such MNPs with PEG modifications in the cancer diagnosis and therapy.


Asunto(s)
Nanopartículas de Magnetita , Neoplasias , Ratas , Animales , Nanopartículas de Magnetita/uso terapéutico , Ratas Sprague-Dawley , Hígado , Polietilenglicoles
4.
Mult Scler Relat Disord ; 80: 105062, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37866020

RESUMEN

This systematic review and meta-analysis summarize the efficacy and safety of Tocilizumab (TCZ) in treating NMOSD and investigates the factors that affect its efficacy. TCZ is the first monoclonal antibody against the IL-6 receptor for treating NMOSD, and its efficacy and safety vary in different studies. We collected English-language research literature until January 1, 2023, by searching databases such as PubMed, MEDLINE, Embase, Cochrane Library, and clinicaltrials.gov, and identified 9 studies involving 153 patients (139 female and 14 male) that met our inclusion criteria. In these studies, the average ARR ratio and EDSS score reduction values in the TCZ treatment group were -1.34 (95 % CI, -1.60 to -1.09) and -0.81 (95 % CI, -1.04 to -0.58), respectively. Based on the data we have collected, compared to the AQP4-IgG negative NMOSD patients, TCZ demonstrates a more pronounced effectiveness in AQP4-IgG positive NMOSD patients. The study also found that the effectiveness of TCZ in reducing NMOSD patients' ARR ratio was related to gender, race, and TCZ dosage, while the effectiveness of reducing EDSS score was not related to these factors. Among the 153 patients receiving TCZ treatment, 101 (66 %) experienced mild adverse reactions, and one patient experienced a severe adverse reaction (facial cellulitis). The comprehensive data indicate that TCZ treatment can reduce the frequency of NMOSD relapses, improve patients' neurological function, and have good safety. The effectiveness of TCZ in reducing NMOSD patients' ARR ratio is related to multiple factors.


Asunto(s)
Neuromielitis Óptica , Humanos , Masculino , Femenino , Neuromielitis Óptica/tratamiento farmacológico , Anticuerpos Monoclonales Humanizados/efectos adversos , Evaluación de la Discapacidad , Inmunoglobulina G , Acuaporina 4
5.
Front Immunol ; 14: 1144532, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37056770

RESUMEN

Introduction: Aquaporin-4 immunoglobulin G (AQP4-IgG)-induced astrocytes injury is a key mechanism in the pathogenesis of neuromyelitis spectrum disorder (NMOSD), and although CCL2 is involved, its specific role has not been reported. We aimed to further investigate the role and potential mechanisms of CCL2 in AQP4-IgG-induced astrocyte injury. Methods: First, we evaluated CCL2 levels in paired samples of subject patients by automated microfluidic platform, Ella®. Second, we knock down astrocyte's CCL2 gene in vitro and in vivo to define the function of CCL2 in AQP4-IgG-induced astrocyte injury. Third, astrocyte injury and brain injury in live mice were assessed by immunofluorescence staining and 7.0T MRI, respectively. Western blotting and high-content screening were conducted to clarify the activation of inflammatory signaling pathways, and changes in CCL2 mRNA and cytokine/chemokines were measured by qPCR technique and flow cytometry, respectively. Results: There were greatly higher CSF-CCL2 levels in NMOSD patients than that in other non-inflammatory neurological diseases (OND) groups. Blocking astrocyte CCL2 gene expression can efficiently mitigate AQP4-IgG-induced damage in vitro and in vivo. Interestingly, prevention of CCL2 expression could decrease other inflammatory cytokines released, including IL-6 and IL-1ß. Our data suggest that CCL2 involves in the initiation and plays a pivotal role in AQP4-IgG-damaged astrocytes. Discussion: Our results indicate that CCL2 may serve as a promising candidate target for inflammatory disorder therapy, including NMOSD.


Asunto(s)
Neuromielitis Óptica , Animales , Ratones , Neuromielitis Óptica/patología , Astrocitos/metabolismo , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Células Cultivadas , Acuaporina 4/genética , Acuaporina 4/metabolismo , Inflamación , Citocinas/metabolismo , Quimiocinas/metabolismo , Inmunoglobulina G/metabolismo
6.
Discov Oncol ; 13(1): 122, 2022 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-36352168

RESUMEN

BACKGROUND: A 4-1BB/CD3-ζ-costimulated CAR-T against CD20 (CAR-T20) was subjected to a systemic efficacy evaluation in a cell co-culture model, and NOD-SCID IL-2 receptor gamma null mice (short for NSG mice) were xenografted with human Burkitt's lymphoma Raji cells. METHODS: CAR-T20 cells were incubated with target cells (K562, K562 CD20 or Raji cells) at ratios of 10:1 and 5:1 for 24 h, and the killing rate was estimated by an LDH cytotoxicity assay. To evaluate the effect of CAR-T20 on the survival time of tumor-bearing animals, 30 NSG mice were employed, and Raji-Luc cells (5 × 105 cells per mouse) were administered prior to CAR-T20 administration. The survival time, optical intensity of Raji-Luc cells, clinical symptoms, and body mass of the animals were observed. Another 144 male NSG mice were employed to investigate the proliferation and antitumor effects of CAR-T20. Human cytokine and murine cytokines were detected at 1, 7, 14, 21, 28, 42, 56 and 90 days post-CAR-T administration, while biochemistry index analysis, T-cell and CAR-T-cell detection in peripheral blood, and histopathological examination were performed at 14, 28, 56 and 90 days post-administration. RESULTS: CAR-T20 cells had a specific killing effect on CD20-expressing cells in vitro. At a dose of 1 × 106 per mouse or above, CAR-T20 prolonged the median survival time from 14 days to more than 3 months, inhibited the proliferation of Raji cells in mice, and alleviated the clinical manifestations and weight loss caused by the Raji-Luc cell load. CAR-T20 at a dose of 2 × 106 per mouse or above inhibited the proliferation of Raji cells in mice for up to 111 days post-administration without recurrence. The numbers of T cells and CAR-T cells in the animals administered CAR-T20 increased significantly when Raji cells were markedly proliferated and subsequently decreased when Raji cells were predominantly inhibited. CAR-T20 increased human IFN-γ, murine TNF and murine IL-6 levels and decreased human IL-10 levels in tumor-bearing mice. The incidences of xenografted tumors in organs/tissues were also reduced effectively by CAR-T20. CONCLUSION: The effective dose of CAR-T20 in mice starts from 1 × 106 per mouse, equivalent to a clinical dose of 5 × 106/kg. Together, our data support the clinical translation of CAR-T20 for R/R B-cell NHL patients.

7.
Artículo en Inglés | MEDLINE | ID: mdl-36416024

RESUMEN

Our current knowledge on nanomaterials is mostly built on data from basic studies, and the application and developmental potentials of nanomaterials are emphasized. On the other hand, standard evaluation methods, models, exposure methods, standards, and guidelines for biological effect evaluation are inadequate. In response to the bottlenecks of supervision, scientific research institutes and regulatory organizations in China have cooperated closely to research and establish an evaluation system for nanomedical devices, and silver-containing nanomaterials have been adopted as an example. In such a context, reference materials, characterization strategies, in vitro and in vivo distribution and toxicity evaluation standards have been established. This article highlights research on the risk assessment of nanomedical device products (taking silver-containing nanomedical device products as an example) in China, including the characterization and release determination strategies, determination of nanosilver in tissues, applications of three-dimensional skin models and in vitro and toxicity evaluation standards have been established. This article highlights research on technical standards. As a consequence, the "Guidelines for the safety and effectiveness evaluation of nanomedical devices" were published in 2021, and a market entry framework for nanomedical devices has been preliminarily formed as a significant component in scientific supervision. This Guideline supervises the review and supervision of nanomedical devices and, therefore, provides a guarantee for the market access of nanomedical devices in China. This article is categorized under: Toxicology and Regulatory Issues in Nanomedicine > Toxicology of Nanomaterials Toxicology and Regulatory Issues in Nanomedicine > Regulatory and Policy Issues in Nanomedicine.


Asunto(s)
Contención de Riesgos Biológicos , Nanoestructuras , Plata , Nanomedicina , China
8.
Regul Toxicol Pharmacol ; 132: 105166, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35405296

RESUMEN

HSV-1/hPD-1 is composed of engineered herpes simplex virus type-1 and two inserted copies of the human PD-1 antibody sequence. It is a novel oncolytic virus product designed to cure malignancies. The objective of this study was to estimate its toxicity in mice. In the single-dose toxicity study, no mortality and abnormal symptoms were observed in animals injected with 4.0 × 107 pfu/mouse dose. In the repeat-dose toxicity study, HSV-1/hPD-1 in animals intramuscularly treated with 1.0 × 107, 2.0 × 107, or 4.0 × 107 pfu/mouse doses was well tolerated in terms of clinical observation, body weight, food consumption, hematology and biochemistry indexes, T lymphocyte counting, immune reaction, and organ weight, except for some histopathological changes, such as the irreversible degeneration of the sciatic nerve, which was considered related to the adopted administration route. Synchronously, a biodistribution study in mice was performed to examine whether HSV-1/hPD-1 could spread to the injection site, gonads, liver, lung, heart, mesenteric and inguinal lymph nodes, skin, dorsal root ganglia, and blood, and then be gradually eliminated. Thus, two safety dose levels-the maximum tolerance dose of 4.0 × 107 pfu/mouse and the no-observed-adverse-effect-level dose of 1.0 × 107 pfu/mouse-were determined to help design patients' dose regimens. Our research data have been successfully accepted for investigational new drug (IND) application in China.


Asunto(s)
Herpesvirus Humano 1 , Viroterapia Oncolítica , Virus Oncolíticos , Animales , Anticuerpos Antivirales , Humanos , Ratones , Viroterapia Oncolítica/efectos adversos , Virus Oncolíticos/genética , Receptor de Muerte Celular Programada 1 , Distribución Tisular
9.
Ann Transl Med ; 9(3): 257, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33708884

RESUMEN

BACKGROUND: The monkey is a primary species used in toxicological research. However, the failures of preclinical studies to predict a life-threatening "cytokine storm", which, for instance, rapidly occurred in six healthy volunteers with the CD28 superagonist monoclonal antibody (mAb) TGN1412 in the first-in-human phase I clinical trial, have emphasized a need to clarify the differences between human and monkey immune systems. METHODS: In the present study, we analyzed and compared the lymphocyte proliferation, cytokine secretion, and gene expression profiles after phytohemagglutinin (PHA) and lipopolysaccharide (LPS) stimulation of peripheral blood mononuclear cells (PBMCs) from three healthy humans and cynomolgus monkeys (Macaca fascicularis). RESULTS: The results derived from comparison with the corresponding control groups showed that PHA in humans induced a stronger proliferation and wider range of cytokine secretion, along with a greater number of differently expressed genes (DEGs), than when PHA was applied in cynomolgus monkeys. The significant upregulation of genes involved in the mitotic cell cycle, including cyclin B2, TOP2A, TYMS, and CEP55, was observed in human PBMCs with PHA stimulation, while only infrequent or slight upregulation occurred in cynomolgus monkey PBMCs, which may be one of the reasons for a stronger response to PHA in humans. In contrast to PHA, LPS in both species induced a similar proliferation ratio, cytokine profile, and DEG count, suggesting that human and cynomolgus monkeys have a similar response intensity for innate immune responses. Furthermore, 38 and 20 overlapped genes under PHA and LPS stimulation, respectively, were found in both species. These overlapped DEGs were associated with the same biological functions, including DNA replication, mitosis, immune response, chemotaxis, and inflammatory response. Thus, these results might reflect the highly conserved signatures of immune responses to PHA/LPS stimulation across the primates. Moreover, there were some differences in antigen processing and presentation, and the interferon gamma (INF-γ)-mediated signaling pathway in these species detected by gene expression profile study. CONCLUSIONS: In conclusion, this is the first study to compare data on the responses of PBMCs to PHA and LPS in humans versus cynomolgus monkeys, and these findings may provide crucial insights into translating non-human primate (NHP) studies into human trials.

10.
Sci Rep ; 10(1): 17018, 2020 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-33028942

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

11.
Sci Rep ; 10(1): 8879, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32483208

RESUMEN

A microfluidic multi-organ chip emulates the tissue culture microenvironment, enables interconnection of organ equivalents and overcomes interspecies differences, making this technology a promising and powerful tool for preclinical drug screening. In this study, we established a microfluidic chip-based model that enabled non-contact cocultivation of liver spheroids and renal proximal tubule barriers in a connecting media circuit over 16 days. Meanwhile, a 14-day repeated-dose systemic administration of cyclosporine A (CsA) alone or in combination with rifampicin was performed. Toxicity profiles of the two different doses of CsA on different target organs could be discriminated and that concomitant treatment with rifampicin from day6 onwards decreased the CsA concentration and attenuated the toxicity compared with that after treatment with CsA for 14 consecutive days. The latter is manifested with the changes in cytotoxicity, cell viability and apoptosis, gene expression of metabolic enzymes and transporters, and noninvasive toxicity biomarkers. The on chip coculture of the liver and the proximal tubulus equivalents showed its potential as an effective and translational tool for repeated dose multi-drug toxicity screening in the preclinical stage of drug development.


Asunto(s)
Técnicas de Cocultivo/instrumentación , Ciclosporina/farmacología , Túbulos Renales Proximales/citología , Hígado/citología , Técnicas Analíticas Microfluídicas/instrumentación , Rifampin/farmacología , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Evaluación Preclínica de Medicamentos , Quimioterapia Combinada , Diseño de Equipo , Redes Reguladoras de Genes/efectos de los fármacos , Humanos , Túbulos Renales Proximales/química , Túbulos Renales Proximales/efectos de los fármacos , Dispositivos Laboratorio en un Chip , Hígado/química , Hígado/efectos de los fármacos , Esferoides Celulares/citología
12.
Toxicol Res (Camb) ; 9(2): 91-100, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32440340

RESUMEN

There have been intensive efforts to identify in vivo biomarkers that can be used to monitor drug-induced kidney damage before significant impairment occurs. Kidney injury molecule-1, neutrophil gelatinase-associated lipocalin, clusterin, ß2-microglobulin and cystatin C (CysC) have been validated as clinical or preclinical biomarkers in urinary and plasma predictive of acute and chronic kidney injuries and diseases. A high-throughput in vitro assay predictive of nephrotoxicity could potentially be implemented in early drug discovery stage to reduce attrition at later stages of drug development. To assess the potential of these known in vivo biomarkers for in vitro evaluation of drug-induced nephrotoxicity, we selected four nephrotoxic agents (cisplatin, cyclosporin, aristolochic acid I and gentamicin) and detected their effects on the protein levels of nephrotoxic biomarkers in RPTEC/TERT1 cells. The protein levels of clusterin, CysC, GSTπ and TIMP-1 significantly increased in the conditioned media of RPTEC/TERT1 cells treated with cisplatin, cyclosporin, aristolochic acid I and gentamicin. The messenger RNA levels of clusterin, CysC, GSTπ and TIMP-1 also increased in RPTEC/TERT1 cells treated with cisplatin, cyclosporin, aristolochic acid I and gentamicin, indicating that drug-induced upregulation involves transcriptional activation. Taken together, the results clearly demonstrate that among the known in vivo nephrotoxic biomarkers, clusterin, CysC, GSTπ and TIMP-1 can be effectively used as in vitro biomarkers for drug-induced nephrotoxicity in RPTEC/TERT1 cells.

13.
Ann Transl Med ; 8(6): 325, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32355769

RESUMEN

BACKGROUND: CPGJ701 is a recombinant humanized anti-human epidermal growth factor receptor-2 (HER2) monoclonal antibody-derivative of the cytotoxic agent maytansine (DM1) conjugate for the treatment of HER2-positive metastatic breast cancer. Tissue cross-reactivity (TCR) studies of CPGJ701 in a complete panel of normal human, cynomolgus monkey and Sprague-Dawley were performed to provide evidence for selecting animal species for use in preclinical toxicity studies and predicting primary target organs and clinical adverse drug reactions (ADRs). METHODS: TCR studies were carried out to evaluate the distribution of reactivity and the TCR of CPGJ701 in paraffin sections of 32 tissues and/or organs (such as the heart, lung, liver, and kidney) from at least three unrelated normal human, cynomolgus monkey and Sprague-Dawley rat donors. The TCR of CPGJ701was detected by one-step immunohistochemical method using 50 µg/mL biotin-labeled CPGJ701 as the primary antibody. Moreover, a negative biotin-labeled human IgG control group, a blank phosphate-buffered saline (PBS) control group, and a positive human breast cancer tissue control group were also used to exclude false positive and false negative results. The specific positive binding and distribution of reactivity of CPGJ701 were detected in the human breast cancer tissue and 32 tissues from normal humans, cynomolgus monkeys and Sprague-Dawley rats under a microscope. RESULTS: The TCR of CPGJ701 in humans and cynomolgus monkeys was highly consistent but showed some differences compared to the TCR of CPGJ701 in Sprague-Dawley rats. The binding of CPGJ701 to target tissues, such as the liver, adrenal gland, thyroid, fallopian tube, spinal cord and skin, was observed in humans and cynomolgus monkeys but not in Sprague-Dawley rats. Specific binding to the placenta was only found in Sprague-Dawley rats. The cell types to which CPGJ701 specifically bound, including epithelial cells, cardiomyocytes and nerve cells, were identical in humans, cynomolgus monkeys and rats. CONCLUSIONS: The TCR of CPGJ701 was in accord with the targeting characteristics of the humanized anti-HER2 monoclonal antibody. The consistency of CPGJ701 binding to human and cynomolgus monkey tissues indicated that the cynomolgus monkey is a relevant animal species for evaluating the preclinical safety of CPGJ701. The targeting (binding site) of CPGJ701 in Sprague-Dawley rats indicated that it is also a useful animal species for evaluating antibody-dependent toxicity and non-antibody-dependent toxicity. In conclusion, these TCR studies of CPGJ701 could provide information for selecting relevant animal species for nonclinical studies and predicting clinical ADRs.

14.
Regul Toxicol Pharmacol ; 114: 104647, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32305367

RESUMEN

The number of Individuals that use dietary supplements and herbal medicine products are continuous to increase in many countries. The context of usage of a dietary supplement varies widely from country-to-country; in some countries supplement use is just limited to general health and well-being while others permit use for medicinal purposes. To date, there is little consensus from country to country on the scope, requirements, definition, or even the terminology in which dietary supplement and herbal medicines categories could be classified. Transparent science-based quality standards for the ingredients across these regulatory frameworks/definitions becomes even more important given the international supply chain. Meanwhile, there has been a rapid advancement in emerging technologies and data science applied to the field. This review was conceived at the Global Summit on Regulatory Sciences that took place in Beijing on September 2018 (GSRS2018) which is organized by Global Coalition for Regulatory Science Research (GCRSR) that consists of the global regulatory agencies from over ten countries including the European Union. This review summarizes a significant portion of discussions relating to a longitudinal comparison of the status for dietary supplements and herbal medicines among the different national jurisdictions and to the extent of how new tools and methodologies can improve the regulatory application.


Asunto(s)
Productos Biológicos/administración & dosificación , Animales , Productos Biológicos/efectos adversos , Suplementos Dietéticos , Medicina de Hierbas , Humanos , Legislación de Medicamentos , Medición de Riesgo
15.
J Ethnopharmacol ; 239: 111910, 2019 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-31026554

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Xian-Ling-Gu-Bao (XLGB) Fufang is an herbal formula that has been used in clinical settings to treat osteoporosis, osteoarthritis, aseptic bone necrosis, and climacteric syndrome. Despite its uses, XLGB treatment has been linked to potential liver injury. To date, there is a lack of clear demonstration of such toxicity in animal models. AIM OF THE STUDY: As animal models fail to reproduce the XLGB hepatotoxicity reported in humans, because human hepatocytes are clearly more sensitive to XLGB, this study was designed to investigate a more reliable animal model of such toxicity. MATERIALS AND METHODS: We randomized rats into five groups, as follows: CON (control), XLGB, lipopolysaccharide (LPS), L-XLGB/LPS (XLGB, 0.125 g/kg; LPS, 0.1 mg/kg), and XLGB/LPS (XLGB, 1.25 g/kg; LPS, 0.1 mg/kg). These groups were treated with 0.5% sodium carboxymethyl cellulose (CMC-Na), XLGB suspension, normal saline, or LPS. The first administration of XLGB [0.125 g/kg or 1.25 g/kg, by mouth (PO)] or its solvent (0.5% CMC-Na) was delivered, and then food was removed. Twelve hours after the first administration of XLGB, rats received LPS [0.1 mg/kg, intravenously (IV)] or saline control. After 30 min, a second administration of XLGB (0.125 g/kg or 1.25 g/kg, PO) or solvent was administered. The rats were anesthetized at 12 h or 24 h following the second administration of XLGB. Liver function was evaluated by measuring liver weight, liver microscopy, serum biochemistry and plasma microRNA-122 (miR-122). The plasma levels of 27 cytokines were measured to evaluate inflammation. Moreover, the expression of cytochrome P450 2E1 (CYP2E1), nicotinic adenine dinucleotide phosphate (NADPH) oxidase and inducible nitric oxide synthase (iNOS) at protein levels were observed; immunofluorescence and immunohistochemistry were used to confirmed the hepatotoxicity of XLGB. RESULTS: Hepatotoxicity in male rats with moderate inflammation induced by XLGB was indicated by liver histopathology, serum biochemical analysis, serum miR-122 levels, and immunofluorescent assessments. We observed significant increases in liver weight and liver indexes in male rats with moderate inflammation in response to XLGB. Histopathological assessment further showed that extensive hepatocellular necrosis and inflammatory infiltration were evident in rats co-treated with XLGB/LPS. The levels of serum transaminases [alanine aminotransferase (ALT), aspartate aminotransferase (AST), gamma-glutamyl transferase (GGT)], total bilirubin (TBIL) and triglyceride (TG), which are markers of liver function, were also significantly increased by XLGB/LPS treatment. Similarly, miR-122 was significantly elevated in XLGB/LPS treated rats relative to other groups. An immunofluorescent assessment showed extensive apoptosis in hepatocytes from these co-treated rats. What is more, XLGB can dose-dependently induce liver injury in male rats with moderate inflammation. Hepatic CYP2E1, neutrophil chemotactic factor (NCF-1), iNOS, and NOX-2 (an NADPH oxidase subunit) levels were increased in response to XLGB treatment, and staining for DMPO nitrone adducts further showed elevated oxidative stress level in XLGB/LPS-treated rats relative to the other experimental groups. CONCLUSION: LPS and XLGB co-treatment in rats led to marked hepatotoxicity. This toxicity was associated with disrupted lipid metabolism, extensive liver necrosis and inflammatory infiltration, apoptosis, and expression of oxidative stress-related proteins. These results demonstrate a valuable model for the study of iDILI in the context of XLGB treatment, and further provide insights into the potential mechanisms by which XLGB may induce hepatotoxicity in humans.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Medicamentos Herbarios Chinos/toxicidad , Animales , Enfermedad Hepática Inducida por Sustancias y Drogas/sangre , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Citocinas/sangre , Lipopolisacáridos/farmacología , Hígado/efectos de los fármacos , Hígado/patología , Masculino , MicroARNs/sangre , Estrés Oxidativo/efectos de los fármacos , Ratas Sprague-Dawley
16.
J Neuroimmunol ; 330: 96-107, 2019 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-30852182

RESUMEN

The effect of cornel iridoid glycoside (CIG), main component extracted from Cornus officinalis, on microglia activation has not been elucidated so far. We induced a mouse model of multiple sclerosis (MS), namely, the experimental autoimmune encephalomyelitis (EAE) model by immunization subcutaneously with the MOG35-55 peptide, which causes neuroinflammation and microglia activation. Our data demonstrated that CIG delayed the onset of the EAE, ameliorated the severity of the symptoms and inhibited the activation of microglia in different brain regions. In addition, we also found that CIG has therapeutic potential by modulating microglia polarization by reducing the expression and release of proinflammatory cytokines, chemokines and inhibiting phosphorylation in the JAK/STAT cell signalling pathway. Based on our findings, CIG might be a promising candidate for the prevention of neurological disorders such as multiple sclerosis (MS).


Asunto(s)
Cornus , Encefalomielitis Autoinmune Experimental/metabolismo , Glicósidos Iridoides/farmacología , Quinasas Janus/metabolismo , Microglía/metabolismo , Factores de Transcripción STAT/metabolismo , Animales , Línea Celular , Relación Dosis-Respuesta a Droga , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Femenino , Glicósidos Iridoides/aislamiento & purificación , Glicósidos Iridoides/uso terapéutico , Quinasas Janus/antagonistas & inhibidores , Ratones , Ratones Endogámicos C57BL , Microglía/efectos de los fármacos , Factores de Transcripción STAT/antagonistas & inhibidores
17.
Behav Brain Res ; 364: 157-161, 2019 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-30772428

RESUMEN

Cuprizone (CPZ), a copper chelator that has been shown to selectively damage white matter, can induce a novel animal model to mimic some symptoms of schizophrenia. This study aimed to examine the effect of clozapine (CLZ) on behavioural changes induced by CPZ exposure and try to explore the underlying mechanisms. Behavioural abnormalities associated with feeding mice a 0.4% (w/w) CPZ-containing diet were assessed by Y-maze, spontaneous locomotor activity, and climbing tests. CLZ treatment reversed the increase in total explored distance, exploring velocity, locomotor movements, climbing behaviours and glial activation induced by CPZ exposure. Our findings indicate that increased glial activation may be related to behavioural abnormalities in CPZ exposure mice and that anti-inflammatory properties may be involved in the CLZ mechanisms. CPZ short-term exposure with a higher dosage may offer a useful model to study some aspects of schizophrenia and evaluate the efficacy of antipsychotics.


Asunto(s)
Clozapina/farmacología , Neuroglía/efectos de los fármacos , Animales , Antipsicóticos/farmacología , Conducta Animal/efectos de los fármacos , Cuprizona/farmacología , Modelos Animales de Enfermedad , Masculino , Ratones , Ratones Endogámicos C57BL , Esquizofrenia/inducido químicamente , Esquizofrenia/metabolismo
18.
J Biochem Mol Toxicol ; 33(3): e22257, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30536793

RESUMEN

Endostar, a potent endogenous antiangiogenic factor, is wildly used in clinics. However, it was easily degraded by enzymes and rapidly cleared by the kidneys. To overcome these shortcomings, PEGylated recombinant human endostatin was developed. In this study, the purity of M2 ES was evaluated by silver stain and reversed-phase high-performance liquid chromatography. Ultraviolet spectrum was used to examine the structural of M2 ES and endostar. The bioactivity and antitumor efficacy of M2 ES were evaluated using an in vitro endothelial cell migration model and athymic nude mouse xenograft model of a heterogeneous lung adenocarcinoma, respectively. A preclinical study was performed to evaluate the acute toxicity and safety pharmacology in rhesus monkeys. The purity of M2 ES was more than 98%; PEG modification has no effect on endostatin structure. Compared with the control group, M2 ES dramatically retards endothelial cell migration and tumor growth. After intravenous (IV) infusions of M2 ES at a dose level of three and 75 mg/kg in rhesus monkeys, there was no observable serious adverse event in both acute toxicity and safety pharmacology study. On the basis of the quality and bioactivity study data of M2 ES and the absence of serious side effect in rhesus monkeys, M2 ES was authorized to initiate a phase I clinical trial.


Asunto(s)
Endostatinas/efectos adversos , Endostatinas/farmacología , Células Endoteliales/efectos de los fármacos , Neoplasias/tratamiento farmacológico , Animales , Células Cultivadas , Endostatinas/uso terapéutico , Endostatinas/toxicidad , Femenino , Humanos , Macaca mulatta , Masculino , Ratones , Ratones Desnudos , Proteínas Recombinantes/efectos adversos , Proteínas Recombinantes/farmacología , Proteínas Recombinantes/uso terapéutico , Proteínas Recombinantes/toxicidad , Ensayos Antitumor por Modelo de Xenoinjerto
19.
Regul Toxicol Pharmacol ; 95: 190-197, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29580973

RESUMEN

PEGylated recombinant human endostatin (M2ES) exhibited prolonged serum half-life and enhanced antitumor activity when compared with endostatin. A pre-clinical study was performed to evaluate the safety of M2ES in rats. After intravenous (IV) infusions of M2ES at a dose level of 3, 15 and 75 mg/kg in Sprague Dawley (SD) rats, M2ES was well tolerated in animals, with no observable changes in clinical observation, body weight, food consumption, urine analysis, hematology and serum biochemical analysis. The increase of kidney weights, and slight to severe vacuolation and necrosis of proximal tubule epithelial cells in kidney were observed in 15 and 75 mg/kg M2ES groups, but this adverse-effect was reversible. In summary, the major toxicity target organ of M2ES might be kidney, and the no observed adverse effect level (NOAEL) of M2ES in rats was 3 mg/kg in this study. These pre-clinical safety data contribute to the initiation of the ongoing clinical study.


Asunto(s)
Endostatinas/toxicidad , Polietilenglicoles/toxicidad , Animales , Anticuerpos/sangre , Evaluación Preclínica de Medicamentos , Endostatinas/química , Endostatinas/inmunología , Células Epiteliales/efectos de los fármacos , Células Epiteliales/patología , Femenino , Humanos , Túbulos Renales Proximales/citología , Masculino , Necrosis/inducido químicamente , Nivel sin Efectos Adversos Observados , Polietilenglicoles/química , Ratas Sprague-Dawley , Proteínas Recombinantes/química , Proteínas Recombinantes/inmunología , Proteínas Recombinantes/toxicidad , Pruebas de Toxicidad Subcrónica
20.
J Med Primatol ; 47(2): 132-135, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29399828

RESUMEN

This report describes a suppurative meningitis in a young cynomolgus. The animal had neutrophil aggregation in the subarachnoid space and hemorrhage in bilateral adrenal glands. Staphylococcus was identified by FISH in brain. To our knowledge, this is the first case of staphylococcal meningitis with Waterhouse-Friderichsen syndrome in a cynomolgus monkey.


Asunto(s)
Macaca fascicularis , Enfermedades de los Monos/diagnóstico , Infecciones Estafilocócicas/veterinaria , Staphylococcus aureus/aislamiento & purificación , Síndrome de Waterhouse-Friderichsen/veterinaria , Animales , Encéfalo/microbiología , Diagnóstico Diferencial , Masculino , Enfermedades de los Monos/patología , Infecciones Estafilocócicas/diagnóstico , Infecciones Estafilocócicas/patología , Síndrome de Waterhouse-Friderichsen/diagnóstico , Síndrome de Waterhouse-Friderichsen/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...